CHEN Yong-yi, QIN Li, TONG Cun-zhu etc. Dual gratings based on surface plasmons for optical beam shaping[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1461-1468
CHEN Yong-yi, QIN Li, TONG Cun-zhu etc. Dual gratings based on surface plasmons for optical beam shaping[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1461-1468 DOI: 10.3788/OPE.20142206.1461.
Dual gratings based on surface plasmons for optical beam shaping
To shape the beam with two-lobe far-field property from a dual side Bragg reflection waveguide semiconductor laser
a dual grating structure based on surface plasmons was prepared on the optical outlet facet of a Bragg reflection waveguide.It could combine the two lobes into a single lobe and to increase the optical intensity and quality of the beam. An Au-SiO
2
grating was used to couple photons into surface plasmons and to combine the two lobe beams into a single beam. The surface plasmons also were taken to increase the extraordinary optical transmission. On the other hand
the Au-Si
3
N
4
grating was used to help the outlet surface plasmons couple back to photons
meanwhile collimating the outlet beam to increase the far-field property. Numerical simulation results indicate when the parameters for Au-SiO
2
show a depth of 50 nm
a filling factor of 0.5 and a duration of 350 nm
and those for Au-Si
3
N
4
show 70
0.5 and 660 nm
respectively
the outlet far-field beam will has a 6.1° divergence
which means the divergence angle shrinks by 3.6 times as that without the dual grating structure. The far-field optical transmission power reaches 62% of the model source
that is 1.59 times of the power of a single lobe far-field to the structure without the dual grating. Moreover
the cavity facet reflectivity has reduced to 12.4%
0.53 times as the structure without the dual grating. It concludes that the dual grating structure has optimized the far field properties of dual side Bragg reflection waveguide semiconductor lasers.
关键词
Keywords
references
LEDENTSOV N N, SHCHUKIN V A. Novel concepts for injection lasers[J]. Opt. Eng., 2002, 41(12):3193-3203.
WEST B R, HELMY A S. Properties of the quarter-wave Bragg reflection waveguide: theory[J]. J. Opt. Soc. Am. B, 2006,23(6):1207-1220.
BIJLANI B J, HELMY A S. Bragg reflection waveguide diode lasers[J]. Opt. Lett., 2009, 34(23): 3734-3736.
TONG C Z, BIJLANI B, ALALI S, et al.. Characteristics of edge emitting Bragg reflection waveguide lasers[J]. IEEE J. Quantum Electron., 2010,46(11):1605-1610.
WANG L J, YANG Y, ZENG Y G, et al.. High power single-sided Bragg reflection waveguide lasers with dual-lobed far field[J]. Appl. Phys. B, 2012, 107(3):809-812.
MAIER S A. Plasmonics: Fundamentals and Applications[M]. London:Springer, 2007:21.
熊尚,罗雪丰,韩立. 纯金膜表面等离子增强的旋光效应[J]. 光学 精密工程,2012, 20(7):1525-1531. XIONG SH, LUO X F, HAN L. Plasmon enhanced megneto-optical effect on surface of pure gold film[J]. Opt. Precision Eng., 2012, 20(7):1525-1531.(in Chinese)
王弋嘉,张崇磊,王蓉,等. 差分干涉表面等离子体共振传感器的优化与验证[J]. 光学 精密工程, 2013,21(3): 672-679. WANG Y J, ZHANG CH L, WANG R,et al.. Optimization and validation of the differential interferometric surface plasmon resonance sensor[J]. Opt. Precision Eng., 2013,21(3):672-679. (in Chinese)
陈泳屹, 佟存柱, 秦莉, 等. 表面等离子体激元纳米激光器技术及应用研究进展[J]. 中国光学, 2012(5): 453-463. CHEN Y Y, TONG C ZH, QIN L,et al.. Process in surface plasmon politaron nano-laser technologies and applications[J]. Chinese Optics, 2012(5): 453-463.(in Chinese)
EBBESEN T W, LEZEC H J, GHAEMI H F, et al.. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998,391: 667-669.
PORTO J A, GARCIA-VIDAL F J, PENDRY J B. Transmission resonances on metallic gratings with very narrow slits[J]. Phys. Rev. Lett., 1999,83(14):2845-2848.
GENET C, EBBESEN T W. Light in tiny holes[J]. Nature, 2007, 445:39-46.
MARTIN-MORENO L, GARCIA-VIDAL F J, LEZEC H J, et al.. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Phys. Rev. Lett., 2003,90(16):167401-1670404.
YU L B, LIN D Z, CHEN Y C, et al.. Physical origin of directional beaming emitted from a subwavelength slit[J]. Phys. Rev. B, 2005,71(4):041405-041408..
LIN D Z, CHANG C K, CHEN Y C, et al.. Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings[J]. Opt. Express, 2006, 14(8):3503-3511.
KIM S, KIM H, LIM Y,et al.. Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings [J]. Appl. Phys. Lett., 2007, 90(5):051113-051115.
DITLBACHER H, KRENN J R, HOHENAU A, et al.. Efficiency of local light-plasmon coupling[J]. Appl. Phys. Lett., 2003,83(18):3665-3667.
GHAEMI H F, THIO T, GRUPP D E. Surface plasmons enhance optical transmission through subwavelength holes [J]. Phys. Rev. B, 1998, 58(11):6779-6782.
JANG S J, YEO C I, YU J S, et al.. 1.55-μm DFB lasers with narrow ridge stripe and second-order metal surface gratings by holographic lithography[J]. Phys. Status Solidi. A, 2010,207(8):1982-1987.