ZHENG Gao-feng, HE Guang-qi, LIU Hai-yan etc. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1555-1561
ZHENG Gao-feng, HE Guang-qi, LIU Hai-yan etc. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1555-1561 DOI: 10.3788/OPE.20142206.1555.
Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone
The application of electrospinning fabrication technology in micro/nano sensor production was investigated. Mixed solutions of praecursor bodies PVP(Polyvinyl Pyrrlidone)/Zn(Ac)
2
and PEO(Polyoxyethylene)/Zn(Ac)
2
were used as the electrospinning materials to make a precursor nanofiber. The precursor nanofiber was calcined at 500 °C in the air to remove polymers and the Zn(Ac)
2
was thermally decomposed and oxidized into ZnO. X-ray diffraction (XRD) was used to charaterize the components of a ZnO nanofiber. The sensing response of a ZnO nanofibrous gas sensor on the ethanol and acetone vapors were tested. The test results indicate that the average diameters of ZnO nanofiber made from PVP/Zn(Ac)
2
PEO/Zn(Ac)
2
precursor are 308 nm and 184 nm
respectively. XRD spectrograms show that the ZnO nanofiber with high purity can be obtained from a blended precursor nanofiber through thermal oxidation. The response time of the ZnO nanofibrous sensor on the objective gas is less than 1 s at room temperature and its sensitivity increases with the increment of gas concentration. Furthermore
the ZnO nanofiber made from PEO/Zn(Ac)
2
precursor shows a roughness surface
a larger specific surface area and higher sensing sensitivity
and the maximal sensitivity of ZnO nanofibrous gas sensor on ethanol and acetone vapor have been up to 215.69 and 118.13
respectively. This work presents a novel method for the integration fabrication of semiconductor micro/nano gas sensors.
关键词
Keywords
references
ARAFAT M M, DINAN B, AKBAR S A, et al.. Gas sensors based on one dimensional nanostructured metal-oxides: a review [J]. Sensors, 2012, 12(6): 7207-7258.
KIM M G, KANATZIDIS M G, FACCHETTI A, et al.. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing [J]. Nat. Mater., 2011, 10(5): 382-388.
JAGTAP S, PRIOLKAR K R. Evaluation of ZnO nanoparticles and study of ZnO-TiO2 composites for lead free humidity sensors [J]. Sensor Actuat B-Chem, 2013, 183: 411-418.
NASR B, WANG D, KRUK R, et al.. High-Speed, low-voltage, and environmentally stable operation of electrochemically gated zinc oxide nanowire field-effect transistors [J]. Adv Funct Mater, 2013, 23(14): 1750-1758.
XUE X, NIE Y, HE B, et al.. Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor [J]. Nanotechnology, 2013, 24(22): 225501.
KO S H, LEE D, KANG H W, et al.. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell [J]. Nano Lett., 2011, 11(2): 666-671.
由丽梅, 霍丽华, 程晓丽, 等. 纺锤状氧化锌的制备及气敏性能研究[J]. 化学传感器, 2013, 33(1): 60-63. YOU L M, HUO L H, CHENG X L, et al.. Study on preparation and gas-sensing properties of spindle shaped ZnO powders [J]. Chem. Sen., 2013, 33(1):60-63. (in Chinese)
YI J, LEE J M, PARK W I. Vertically aligned ZnO nanorods and graphene hybrid architectures for high-sensitive flexible gas sensors [J]. Sensor Actuat. B-Chem., 2011, 155(1): 264-269.
LIM Y T, SON J Y, RHEE J S. Vertical ZnO nanorod array as an effective hydrogen gas sensor [J]. Ceram. Int., 2013, 39(1): 887-890.
RAI P, SONG H M, KIM Y S, et al.. Microwave assisted hydrothermal synthesis of single crystalline ZnO nanorods for gas sensor application [J]. Mater. Lett., 2012, 68: 90-93.
BAI S, LIU X, LI D, et al.. Synthesis of ZnO nanorods and its application in NO2 sensors [J]. Sensor Actuat. B-Chem., 2011, 153(1): 110-116.
HASSAN H S, KASHYOUT A, SOLIMAN H, et al.. Effect of reaction time and Sb doping ratios on the architecturing of ZnO nanomaterials for gas sensor applications [J]. Appl. Suf. Sci., 2013, 277(15): 73-82.
PATI S, MAITY A, BANERJI P, et al.. Temperature dependent donor-acceptor transition of ZnO thin film gas sensor during butane detection [J]. Sensor Actuat. B-Chem., 2013, 183: 172-178.
陈涛,李正炜,王建立,等. 应用压缩传感理论的单像素相机成像系统[J]. 光学 精密工程,2012,20(11): 2523-2530. CHEN T, LI ZH W,WANG J L, et al.. Imaging system of single pixel camera based on compressed sensing [J]. Opt. Precision Eng., 2012, 20(11): 2523-2530. (in Chinese)
俞文凯,姚旭日,刘雪峰,等. 压缩传感用于极弱光计数成像[J]. 光学 精密工程,2012,20(10): 2283-2292. YU W K, YAO X R, LIU X F, et al.. Compressed sensing for ultra-weak light counting imaging[J]. Opt. Precision Eng., 2012, 20(10): 2283-2292. (in Chinese)
KATOCH A, SUN G J, CHOI S W, et al.. Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofiber [J]. Sensor Actuat. B-Chem., 2013, 185(8): 411-416.
ZHENG Y, XIE S, ZENG Y. Electric field distribution and jet motion in electrospinning process: from needle to hole [J]. J. Mater. Sci., 2013, 48(19): 6647-6655.
李文望,郑高峰,王翔,等. 电纺直写纳米纤维在图案化基底的定位沉积[J]. 光学 精密工程,2010,18(10): 2231-2238. LI W W, ZHENG G F, WANG X, et al.. Position deposition of electrospinning direct-writing nanofiber on pattern substrate [J]. Opt. Precision Eng., 2010, 18(10):2231-2238. (in Chinese)
HAN L, ANDRADY A A, ENSOR D S. Chemical sensing using electrospun polymer/carbon nanotube composite nanofiber with printed-on electrodes [J]. Sensor Actuat. B-Chem., 2013, 168(1): 52-55.
赵恩铭,雒莘梓,李乐,等. 电纺氧化硅凝胶亚微米光波导[J]. 光学 精密工程,2012,20(6): 1282-1287. ZHAO E M, LUO X Z. LI L, et al.. Electrosupn silicon gel submicrometer optical waveguides[J]. Opt. Precision Eng., 2012, 20(6):1282-1287. (in Chinese)
ZAMPETTI E, MACAGNANO A, BEARZOTTI A. Gas sensor based on photoconductive electrospun titania nanofibres operating at room temperature [J]. J. Nanopart. Res., 2013, 15(4): 1-8.
徐韵,李云鹏,金璐,等. 脉冲激光沉积法制备的ZnO薄膜的低阈值电抽运紫外随机激射[J]. 物理学报,2013,62(8): 084207. XU Y, LI Y P, JIN L, et al.. Low-threshold electrically pumped ultraviolet random lasing from ZnO film prepared by pulsed laser deposition[J]. Acta Phys. Sin., 2013, 62(8):084207. (in Chinese)
HSU H C, HUANG H Y, ERIKSSON M O, et al.. Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method [J]. Appl. Phys. Lett., 2013, 102(1): 013109.