SUN Jian-ming,. Star image noise filtering based on regularization influence function diffusion model[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1655-1660
SUN Jian-ming,. Star image noise filtering based on regularization influence function diffusion model[J]. Editorial Office of Optics and Precision Engineering, 2014,22(6): 1655-1660 DOI: 10.3788/OPE.20142206.1655.
Star image noise filtering based on regularization influence function diffusion model
As noise filtering of a star image has a high demand for reserving details of star edge
a new star map noise filtering method on a regularization influence function diffusion model was proposed based on Tukey diffusion model and modified Perona-Malik model. The boundary point set was extracted by a derivative operator and the map noise was processed by filtering with the space distribution characteristics of the original pixel and the noise pixel in the images. Moreover
the image edge was recovered by a given boundary condition. Due to avoiding Variance Stabilization(VS) transform
it could process the Gaussian noise directly. Simulation experiments on a common image and a star map with Gaussian noise show that this method has good capability of noise filtering and can effectively reserve the edges of feature images. Compared with common diffusion function algorithm
the average error is reduced by 13.6% and the Peak Signal to Noise Ratio(PSNR) is improved by 6.1%. Filtering performance of the proposed method is better than that of common diffusion function method
especially suitable for noise filtering of star maps.
关键词
Keywords
references
LEFKIMMIATIS S, UNSER M. Poisson image reconstruction with hessian schatten-norm regularization [J]. IEEE Transactions on Image Processing, 2013, 22(11):4314-4327.
胡英,杨杰,周越. 基于多尺度Wiener滤波器的分形噪声滤波[J]. 电子学报, 2003, 31(4):560-563. HU Y,YANG J,ZHOU Y. Multiscale wiener filter for the estimation of signal embedded in 1/f noise[J]. Acta Electronica Sinica, 2003, 31(4):560-563. (in Chinese)
李云飞,李敏杰,司国良,等. TDI-CCD图像传感器的噪声分析与处理[J]. 光学 精密工程,2007,15(8):1196-1202. LI Y F,LI M J,SI G L, et al.. Noise analyzing and processing of TDI-CCD image sensor[J]. Opt. Precision Eng., 2007,15(8):1196-1202. (in Chinese)
任文琦,王元全. 基于梯度矢量卷积场的四阶各向异性扩散及图像去噪[J]. 光学 精密工程,2013,21(10):2713-2719. REN W Q,WAN Y Q. GVC-based fourth-order anisotropic diffusion for image denoising [J]. Opt. Precision Eng., 2013,21(10):2713-2719. (in Chinese)
郭永彩,王婀娜,高潮. 空间自适应和正则化技术的盲图像复原[J]. 光学 精密工程,2008, 16(11):2263-2267. GUO Y C,WANG A N,GAO C. Blind image restoration algorithm based on space-adaptive and regularization [J]. Opt. Precision Eng., 2008, 16(11):2263-2267. (in Chinese)
江洁,邓琼,张广军. 基于小波变换的正则化盲图像复原算法[J]. 光学 精密工程, 2007,15(4): 582-586. JIANG J,DENG Q,ZHANG G J. Regularization algorithm for blind image restoration based on wavelet transform[J]. Opt. Precision Eng., 2007,15(4): 582-586. (in Chinese)
王丽艳,韦志辉,李星秀. 多成分正则化约束的断层图像重建算法[J]. 中国图象图形学报, 2012,17(1):20-26. WANG L Y,WEI ZH H,LI X X. Morphological component analysis for tomography reconstruction [J]. Journal of Image and Graphics, 2012,17(1):20-26. (in Chinese)
李伟红,董亚莉,唐述. 多范数混合约束的正则化图像盲复原[J]. 光学 精密工程,2013,21(5):1357-1364. LI W H, DONG Y L, TANG SH. Regularized blind image restoration based on multi-norm hybrid constraints [J]. Opt. Precision Eng., 2013,21(5):1357-1364.(in Chinese)
周箩鱼,张葆,杨扬. 自适应阈值的超变分正则化图像盲复原[J]. 光学 精密工程,2012,20(12):2759-2767. ZHOU L Y, ZHANG B, YANG Y. Image blind deblurring based on super total variation regularization with self-adaptive threshold [J]. Opt. Precision Eng., 2012,20(12):2759-2767.(in Chinese)
梁栋,梁昭,鲍文霞,等. 基于非局部正则化稀疏表示的图像去噪算法[J]. 系统工程与电子技术,2013,35(5):1104-1109. LIANG D,LIANG Z,BAO W X, et al.. Image denoising algorithm based on non-local regularized sparse representation[J]. Systems Engineering and Electronics,2013,35(5):1104-1109. (in Chinese)
GENG X J, ROSS T J,HONG G,et al.. Diffeomorphic image registration of diffusion MRI using spherical harmonics[J].IEEE Trans.Medical Imaging,2011,30(3):747-758.
TAEG SANG CHO, ZITNICK C L, JOSHI N, et al.. Image restoration by matching gradient distributions [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(4):683-694.