ZHANG Xin, BAI Yue, ZHAO Chang-jun etc. Improved adaptive extended Kalman algorithm for attitude estimation of multi-rotor UAV[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3384-3390
ZHANG Xin, BAI Yue, ZHAO Chang-jun etc. Improved adaptive extended Kalman algorithm for attitude estimation of multi-rotor UAV[J]. Editorial Office of Optics and Precision Engineering, 2014,22(12): 3384-3390 DOI: 10.3788/OPE.20142212.3384.
Improved adaptive extended Kalman algorithm for attitude estimation of multi-rotor UAV
An improved Sage-Husa adaptive extended Kalman filter algorithm is proposed to ensure the precision and stability of calculating attitude angles of a multi-rotor Unmanned Aerial Vehicle(UAV) under the actual flight conditions
such as unknown and time-varied noise statistical properties
main disturbance source in vibration and attitude angles high dynamically changed. The algorithm uses attitude angle variance estimated by a gyroscope in real time to estimate system noise variance and only adopts an adaptive filter algorithm to estimate measurement noise variance on-line to ensure the precision and stability of filtering. Meanwhile
it introduces the criterion of filter convergence to restrain the divergence of Kalman filter through combining with a strong tracking Kalman filter algorithm. A flight experiment and corresponding analysis show that the root-mean-square errors of the pinch and roll angles estimated by the improved algorithm are 1.722° and 1.182°
obviously better than that of the conventional Sage-Husa adaptive Kalman filter algorithm. It concludes that the improved algorithm has strong adaptive ability
good real-time performance
high precision and reliable operation. It meets the need of multi-rotor UAV autonomous flight and can be applied to other navigation information measuring systems with high dynamic performance requirements if the parameters are modified appropriately.
关键词
Keywords
references
PAW Y CH,BALAS G J. Development and application of an integrated framework for small UAV flight control development [J]. Mechatronics,2011,21:789-802.
陈向坚,李迪,续志军,等. 四旋翼微型飞行器的区间二型模糊神经网络自适应控制[J]. 光学 精密工程, 2012, 20(6):1334-1341. CHEN X J,LI D,XU ZH J, et al.. Adaptive control of quadrotor MAV using interval type-II fuzzy neural network [J]. Opt. Precision Eng., 2012, 20(6):1334-1341. (in Chinese)
宫勋,白越,赵常均,等. Hex-Rotor无人飞行器及其飞行控制系统设计[J]. 光学 精密工程, 2012, 20(11):2450-2458. GONG X,BAI Y,ZHAO CH J, et al.. Hex-Rotor aircraft and its autonomous flight control system[J]. Opt. Precision Eng., 2012, 20(11):2450-2458. (in Chinese)
李迪,陈向坚,续志军. 增益自适应滑模控制器在微型飞行器飞行姿态控制中的应用[J]. 光学 精密工程, 2013, 21(5):1183-1191. LI D, CHEN X J, XU ZH J. Gain adaptive sliding mode controller for flight attitude control of MAV[J]. Opt. Precision Eng., 2013, 21(5):1183-1191. (in Chinese)
冯智勇,曾瀚,张力,等. 基于陀螺仪及加速度计信号融合的姿态角度测量[J]. 西南师范大学学报:自然科学版, 2011, 36(4):137-141. FENG ZH Y, ZENG H, ZHANG L, et al.. Angle measurement based on gyroscope and accelerometer signal fusion [J]. Journal of Southwest China Normal University:Natural Science Edition, 2011, 36(4):137-141. (in Chinese)
GAO W, LI J C. Adaptive kalman filtering for the integrated SINS/DVL system[J]. Journal of Computational Information Systems, 2013,9(16):6443-6450.
CHINGIZ H, HALIL E S. Robust adaptive kalman filter for estimation of UAV dynamics in the presence of sensor/actuator faults[J]. Aerospace Science and Technology,2013,28:376-383.
SAGE A P, HUSA G W. Adaptive filtering with unknown prior statistics[C]. Proceeding of the Joint Automatic Control Conference, Tokyo, Japan, 1969:760-769.
KOWNACKI C. Optimization approach to adapt kalman filters for the real-time application of accelerometer and gyroscope signals’ filtering[J]. Digital Signal Processing,2011,21:131-140.
韩辅君,徐静,宋世忠. 基于低成本多传感器的自适应组合滤波[J]. 光学 精密工程, 2011, 19(12):3007-3014. HAN F J, XU J, SONG SH ZH. Adaptive attitude estimation filtering with low-cost multi-sensors for MAHRS [J]. Opt. Precision Eng., 2011, 19(12):3007-3014. (in Chinese)
张常云. 自适应滤波方法研究[J]. 航空学报, 1998, 19(7S):S96-S99. ZHANG CH Y. Approach to adaptive filtering algorithm [J]. Chinese Journal of Aeronautics, 1998, 19(7S):S96-S99. (in Chinese)
RIGATOS G G. Nonlinear kalman filters and particle filters for integrated navigation of unmanned aerial vehicles[J]. Robotics and Autonomous Systems,2012,60:978-995.
付梦印,邓志红,闫莉萍. Kalman滤波理论及其导航系统中的应用[M]. 2版.北京:科学出版社, 2010. FU M Y, DENG ZH H, YAN L P. Kalman Filtering Theory and Applications in Navigation System[M].Second Edition, Beijing: Science Press, 2010. (in Chinese)
段战胜,韩崇昭. 一种强跟踪自适应状态估计器及其仿真研究[J]. 系统仿真学报, 2004, 16(5):1020-1023. DUAN ZH SH, HAN CH ZH. A strong tracking adaptive state estimator and simulation[J]. Journal of System Simulation, 2004, 16(5):1020-1023. (in Chinese)
严恭敏,李四海,秦永元. 惯性仪器测试与数据分析[M]. 北京:国防工业出版社, 2012. YAN G M, LI S H, QIN Y Y. Test and Data Analysis of Inertial Instrument [M]. Beijing: National Defense Industry Press, 2012. (in Chinese)