浏览全部资源
扫码关注微信
1. 东南大学 生物科学与医学工程学院,江苏 南京,210096
2. 东南大学 苏州研究院,江苏 苏州,215123
Received:14 March 2014,
Revised:12 May 2014,
Published:25 January 2015
移动端阅览
周平, 朱统晶, 刘欣冉等. 结构光测量中相位误差的过补偿与欠补偿校正[J]. 光学精密工程, 2015,23(1): 56-62
ZHOU Ping, ZHU Tong-jing, LIU Xin-ran etc. Correction of phase error overcompensation and under-compensation in structured light measurement[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 56-62
周平, 朱统晶, 刘欣冉等. 结构光测量中相位误差的过补偿与欠补偿校正[J]. 光学精密工程, 2015,23(1): 56-62 DOI: 10.3788/OPE.20152301.0056.
ZHOU Ping, ZHU Tong-jing, LIU Xin-ran etc. Correction of phase error overcompensation and under-compensation in structured light measurement[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 56-62 DOI: 10.3788/OPE.20152301.0056.
针对现有结构光测量中采用的相位误差补偿算法存在的相位误差过补偿或欠补偿问题
提出了一种新的相位补偿误差校正算法.推导了环境光下四步相移的相位误差数学模型
解释了相位误差过补偿、欠补偿的产生原因;通过数学推导获得相位误差的解析表达式
提出了相位误差过补偿、欠补偿的校正算法.该方法通过向标定平面投射4步相移图像、16步相移图像与黑白图像获得相位误差系数;然后在8种不同环境光条件下重复这一步骤获得多组系数;最后运用参数拟合法获得相位误差数学模型的具体表达式.实验结果表明:无论在黑暗环境还是光环境下
利用该修正方法进行相位误差补偿后均可使相位精度达到0.002 rad
比进行相位误差补偿前提高了8.6倍左右
比查找表(LUT)提高了2.5倍左右.该算法精度高
速度快
能有效解决相位误差过补偿、欠补偿的问题.
In structured light measurement
the current phase error compensation algorithms always lead to phase error overcompensation or under-compensation as the ambient light is varied. Therefore
a new correction method for the phase compensation errors was proposed. Based on analyzing the impact of ambient light on phase errors of four-step phase-shifting method
the reasons of phase error overcompensation and under-compensation were illuminated
the expression of the phase errors was deduced and a method to correct the phase compensation error was proposed. To compensate phase error accurately
a group of four-step phase-shifting images
sixteen-step phase-shifting images
black and white images were projected to the calibration plane
then the operation was repeated in eight different ambient light conditions to obtain several groups of coefficients. Subsequently
the analytical expression was obtained by a curve fitting. Experimental results show that the accuracy of phase error compensation is 0.002 rad no matter under dark or light environments when the method is applied
which is about 9.6 times higher than that without phase error compensation and about 3.5 times higher than that with Look-Up-Table(LUT) compensation only. This method is characterized by higher accuracy and reliability and can be used to compensate the phase errors in varied ambient lights accurately.
陈晓荣, 蔡萍, 施文康. 光学非接触三维形貌测量技术新进展 [J]. 光学 精密工程, 2002, 10(5): 528-532. CHEN X R, CAI P, SHI W K. The latest development of optical noncontact 3D profile measurement [J]. Opt. Precision Eng., 2002, 10(5): 528-532. (in Chinese)
ZHOU P, LIU X, ZHU T. Analysis of the relationship between fringe angle and three-dimensional profilometry system sensitivity [J]. Applied Optics, 2014, 53(13): 2929-2935.
林焕, 马志峰, 姚春海, 等. 基于格雷码-相移的双目三维测量方法研究 [J]. 电子学报, 2013, 41(1): 24-28. LIN H, MA ZH F, YAO CH H, et al.. 3D measurement technology based on binocular vision using a combination of gray code and phase-shift structured light [J]. Acta Electronic Sinica, 2013, 41(1): 24-28. (in Chinese)
许丽, 张之江. 结构光测量系统的误差传递分析 [J]. 光学 精密工程, 2009, 17(2): 306-313. XU L, ZHAN ZH J. Error propagation analysis of structured light system [J]. Opt. Precision Eng., 2009, 17(2): 306-313. (in Chinese)
贾小军, 张之江, 曹芳, 等. 编码结构光系统模型及误差分析 [J]. 光学 精密工程, 2011, 19(4):717-726. JIA X J, ZHANG ZH J, CAO F, et al.. System model and error analysis for structure light [J]. Opt. Precision Eng., 2011, 19(4)::717-726. (in Chinese)
ZHANG S, YAU S T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector [J]. Applied Optics, 2007, 46(1): 36-43.
PAN B, KEMAO Q, HUANG L, et al.. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry [J]. Optics Letters, 2009, 34(4): 416-418.
CHEN X, XI J, JIN Y. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection [J]. Optical Engineering, 2008, 47(11): 113601-113601-9.
GUO H, HE H, CHEN M. Gamma correction for digital fringe projection profilometry [J]. Applied Optics, 2004, 43(14): 2906-2914.
LILLEY F, LALOR M J, BURTON D R. Robust fringe analysis system for human body shape measurement [J]. Optical Engineering, 2000, 39(1): 187-195.
ZHOU P, LIU X, HE Y, et al.. Phase error analysis and compensation considering ambient light for phase measuring profilometry [J]. Optics and Lasers in Engineering, 2014, 55: 99-104.
LIU K, WANG Y, LAU D L, et al.. Gamma model and its analysis for phase measuring profilometry [J]. JOSA A, 2010, 27(3): 553-562.
HOANG T, PAN B, NGUYEN D, et al.. Generic gamma correction for accuracy enhancement in fringe-projection profilometry [J]. Optics Letters, 2010, 35(12): 1992-1994.
LI Z, LI Y. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry [J]. Optics Letters, 2011, 36(2): 154-156.
ZHANG X, ZHU L, LI Y, et al.. Generic non-sinusoidal fringe model and gamma calibration in phase measuring profilometry [J]. JOSA A, 2012, 29(6): 1047-1058.
0
Views
253
下载量
7
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution