ZHU Wei, RUI Xiao-ting,. Online parameter identification of Bouc-Wen model for piezoelectric actuators[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 110-116
ZHU Wei, RUI Xiao-ting,. Online parameter identification of Bouc-Wen model for piezoelectric actuators[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 110-116 DOI: 10.3788/OPE.20152301.0110.
Online parameter identification of Bouc-Wen model for piezoelectric actuators
The exciting Bouc-Wen model with fixed-parameters can not characterize the frequency-dependent and time-varying properties from the hysteresis of piezoelectric actuators and easy to generate simulation errors. In order to accurately describe these characteristics
the Bouc-Wen model was established and a recursive least square online identification method was proposed to identify the parameters of the Bouc-Wen model in real-time. Meanwhile
the limited memory method was used to limit the data sets to avoid the data saturation phenomenon. To verify the availability of the identification method
an experimental system was set up and the performance of the identification method was experimentally verified. Experimental results show that the limited memory recursive least square identification method makes the Bouc-Wen model show the frequency shift and time-varying characteristics. When the drive voltage is set to be 100 Hz
the largest absolute simulation error decreases from 1.38 μm to 0.51 μm
and reduced by 63.7%. Compared with the traditional off line parameter identification
the online identification effectively improves the modeling accuracy of the Bouc-Wen model.
关键词
Keywords
references
DONG W, TANG J, AND ELDEEB Y. Design of a linear-motion dual-stage actuation system for precision control [J]. Smart Materials and Structures, 2009, 18(9): 095035-1-11.
房建成, 陈萌, 李海涛. 磁悬浮控制力矩陀螺框架系统谐波减速器的迟滞建模 [J]. 光学 精密工程, 2014, 22(11): 2950-2958. FANG J CH, CHEN M, LI H T. Hysteresis modeling for harmonic drive in DGMSCMG gimbal system [J]. Opt. Precision Eng., 2014, 22(11): 2950-2958. (in Chinese)
陈远晟, 裘进浩, 季宏丽. 基于双曲函数的Preisach类迟滞非线性建模与逆控制 [J]. 光学 精密工程, 2013, 21(5):1205-1212. CHEN Y SH, QIU J H, JI H L. Modeling and inrerse control of preisach type hysteresis nonlinearity using hyperbola functions [J]. Opt. Precision Eng., 2013, 21(5):1205-1212. (in Chinese)
耿洁, 刘向东, 陈振, 等. Preisach迟滞逆模型的神经网络分类排序实现 [J]. 光学 精密工程, 2010, 18(4): 855-862. GENG J, LIU X D, CHEN ZH,at el.. The sorting & taxis realization of Preisach inverse hysteresis model using neural network [J]. Opt. Precision Eng., 2010, 18(4): 855-862. (in Chinese)
TAN U X, LATT W T, WIDJAJA F,et al.. Tracking control of hysteretic piezoelectric actuator using adaptive rate-dependent controller [J]. Sensors and Actuators A: Physical, 2009, 150(1): 116-123.
SUN L, RU C, RONG W, CHEN L, et al.. Tracking control of piezoelectric actuator based on a new mathematical model [J]. Journal of Micromechanics and Microengineering, 2004, 14(11): 1439-1444.
张桂林, 张承进, 赵学良. 压电驱动器记忆特性迟滞非线性建模 [J]. 光学 精密工程, 2012, 20 (5): 996-1011. ZHANG G L, ZHANG CH J,ZHAO X L. Modeling of nonlocal memory hysteresis in piezoelectric actuators [J]. Opt. Precision Eng., 2012, 20 (5): 996-1011. (in Chinese)
张栋, 张承进, 魏强, 等. 压电工作台的神经网络建模与控制 [J]. 光学 精密工程, 2012, 20 (3): 577-586. ZHANG D, ZHANG CH J,WEI Q, et al.. Sliding mode control of hysteresis of piezoceramic actuator based on inverse preisach compensation [J]. Opt. Precision Eng., 2012, 20 (3): 577-586. (in Chinese)
魏强, 张承进, 张栋, 等. 压电陶瓷驱动器的滑模神经网络控制 [J]. 光学 精密工程, 2012, 20 (5): 1055-1063. WEI Q, ZHANG CH J, ZHANG D, et al.. Neural network control for piezo-actuator using sliding-model technique [J]. Opt. Precision Eng., 2012, 20 (5): 1055-1063. (in Chinese)
QUANT M, ELIZALDE H, FLORES A,et al.. A comprehensive model for piezoceramic actuators: modelling, validation and application [J]. Smart Materials and Structures, 2009, 18(12): 125011 (16 pp).
裘进浩, 陈海荣, 陈远晟, 等. 压电驱动器的非对称迟滞模型 [J]. 纳米技术与精密工程, 2012, 10(3): 189-197. QIU J H, CHEN H R, CHEN Y SH, et al.. A model for asymmetric hysteresis of piezoelectric actuators [J]. Nanotechnology and Precision Engineering, 2012, 10(3): 189-197. (in Chinese)
HEGEWALD T, KALTENBACHER B, KALTENBACHER M, et al.. Efficient modeling of ferroelectric behavior for the analysis of piezoceramic actuators [J]. Journal of Intelligent Material Systems and Structures, 2008, 19(10): 1117-1129.
LI J W, CHEN X B, AN Q, et al.. Friction models incorporating thermal effects in highly precision actuators [J]. Review of Scientific Instruments, 2009, 80(4): 045104-1-6.
HUANG S J, CHIU C M. Optimal LuGre friction model identification based on genetic algorithm and sliding mode control of a piezoelectric-actuating table [J]. T. I. Meas. Control, 2009, 31(1): 181-203.
王代华, 朱炜. WTYD型压电陶瓷微位移器的迟滞特性建模与实验验证 [J]. 光学 精密工程, 2010,18 (1): 205-211. WANG D H, ZHU W. The hysteretic modeling and experimental verification for WTYD type piezoceramic micro-actuators [J]. Opt. Precision Eng., 2010, 18 (1): 205-211. (in Chinese)
ZHU W, WANG D H. Non-symmetrical Bouc-Wen model for a piezoelectric ceramic actuator [J]. Sensor Actuat. A-Phys., 2012, 181: 51-60.
WANG D H, ZHU W. Phenomenological model for pre-stressed piezoelectric stack actuators [J]. Smart Mater. Struct., 2011, 20(3): 035018-1-11.
SMYTH A W, MASRI S F, KOSMATOPOULOS E B, et al.. Development of adaptive modeling techniques for nonlinear hysteretic systems [J]. International Journal of Non-Linear Mechanics, 2002, 37(8): 1435-1451.
ISMAIL M, IKHOUANE F, RODELLAR J. The Hysteresis Bouc-Wen model, a survey [J]. Arch. Comput. Methods Eng., 2009, 16: 161-188.
WANG D H, ZHU W, YANG Q, et al.. A high-voltage and high-power amplifier for driving piezoelectric stack actuators [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(16): 1987-2001.