GUO Shu-xu, ZHANG Chi, CAO Jun-sheng etc. Object reconstruction by compressive sensing based normalized ghost imaging[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 288-294
GUO Shu-xu, ZHANG Chi, CAO Jun-sheng etc. Object reconstruction by compressive sensing based normalized ghost imaging[J]. Editorial Office of Optics and Precision Engineering, 2015,23(1): 288-294 DOI: 10.3788/OPE.20152301.0288.
Object reconstruction by compressive sensing based normalized ghost imaging
a compressive sensing based normalized ghost imaging method was proposed. Firstly
the measurements of a bucket detector were normalized
and the measurement matrix was constructed with speckle fields.Then
the object image was reconstructed with a low number of measurements by adopting orthogonal matching pursuit method. Several experiments were performed by using gray-scale images and binary images respectively as the imaging targets and the Peak Signal to Noise Ratio(PSNR) as the yardstick. The reconstruction effects were quantized and compared for traditional Ghost Imaging(GI)
Normalized Ghost Imaging(NGI) and Compressive Sensing based Normalized Ghost Imaging(CSNGI) respectively. The simulation results indicate that the PSNR of CSNGI is about 6 dB and 2 dB higher than those of GI and NGI on gray-scale images with more details
and 3.4-4.3 dB and 5.2-6.5 dB higher than those of NGI and GI for binary images with less details
respectively. Finally
the actual speckle field measured by Charge Coupled Devices(CCDs) was used to construct the measurement matrix
and the experiment results also further indicate that the CSNGI improves the reconstruction quality greatly.
关键词
Keywords
references
PITTMAN T B, SHIH Y H, STREKALOV D V, et al.. Optical imaging by means of two-photon quantum entanglement [J]. Physical Review A, 1995, 52(5): R3429.
MEYERS R E, DEACON K S. Quantum ghost imaging experiments at ARL [C].SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, 2010: 78150I-78150I-8.
GATTI A, BRAMBILLA E, BACHE M, et al.. Ghost imaging with thermal light: comparing entanglement and classical correlation [J]. Physical Review Letters, 2004, 93(9): 093602.
SHAPIRO J H. Computational ghost imaging [J]. Physical Review A, 2008, 78(6): 061802.
FERRI F, MAGATTI D, LUGIATO L A, et al.. Differential ghost imaging [J]. Physical Review Letters, 2010, 104(25): 253603.
SUN B, WELSH S S, EDGAR M P, et al.. Normalized ghost imaging [J]. Optics Express, 2012, 20(15): 16892-16901.
CHEN X H, AGAFONOV I N, LUO K H, et al.. High-visibility, high-order lensless ghost imaging with thermal light [J]. Optics Letters, 2010, 35(8): 1166-1168.
KATZ O, BROMBERG Y, SILBERBERG Y. Compressive ghost imaging [J]. Applied Physics Letters, 2009, 95(13): 131110.
陆明海, 沈夏, 韩申生. 基于数字微镜器件的压缩感知关联成像研究 [J]. 光学学报,2011, 31(7): 98-103. LU M H, SHEN X, HAN SH SH. Ghost imaging via compressive sampling based on digital micromirror device [J]. Acta Optica Sinica, 2011, 31(7): 98-103.(in Chinese)
DU J, GONG W, HAN S. The influence of sparsity property of images on ghost imaging with thermal light [J]. Optics Letters, 2012, 37(6): 1067-1069.
白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究 [J]. 物理学报, 2013, 62(4): 044209-7. BAI X, LI Y Q, ZHAO SH M. Differential compressive correlated imaging [J]. Acta Physica Sinica, 2013, 62(4): 044209-7.(in Chinese)
BROMBERG Y, KATZ O, SILBERBERG Y. Ghost imaging with a single detector [J]. Physical Review A, 2009, 79(5): 053840.
XIONG J, CAO D Z, HUANG F, et al.. Experimental observation of classical subwavelength interference with a pseudothermal light source [J]. Physical review letters, 2005, 94(17): 173601.
ZHAI Y H, CHEN X H, ZHANG D, et al.. Two-photon interference with true thermal light [J]. Physical Review A, 2005, 72(4): 043805.
孙永明, 吴谨, 刘劲. 基于CS测量矩阵优化的图像融合 [J]. 液晶与显示, 2014, 29(3): 461-465. SUN Y M, WU J, LIU J.Image fusion based on CS measurement matrix optimization [J].Chinese Journal of Liquid Crystals and Displays, 2014, 29(3): 461-465.(in Chinese)
DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
朱秋平, 颜佳, 张虎, 等. 基于压缩感知的多特征实时跟踪 [J]. 光学 精密工程, 2013, 21(2): 437-444. ZHU Q P, YAN J, ZHANG H, et al.. Real-time tracking using multiple features based on compressive sensing [J]. Opt. Precision Eng., 2013, 21(2): 437-444.(in Chinese)
刘欣悦, 董磊, 王建立. 稀疏采样傅里叶望远镜成像 [J]. 光学 精密工程, 2010, 18(3): 521-527. LIU X Y, DONG L, WANG J L. Fourier telescopy imaging via sparse sampling [J]. Opt. Precision Eng., 2010, 18(3): 521-527.(in Chinese)
CANDES E J, ROMBERG J K, TAO T. Stable signal recovery from incomplete and inaccurate measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
CANDES E, ROMBERG J. Sparsity and incoherence in compressive sampling [J]. Inverse Problems, 2007, 23(3): 969.
CANDÈS E J, WAKIN M B. An introduction to compressive sampling [J]. Signal Processing Magazine, IEEE, 2008, 25(2): 21-30.
LIANG D, ZHANG H F, YING L. Compressed-sensing photoacoustic imaging based on random optical illumination [J]. International Journal of Functional Informatics and Personalised Medicine, 2009, 2(4): 394-406.
ZAMBRANO-NUNEZ M, MARENGO E A, FISHER J M. Coherent single-detector imaging system [C].2010 IEEE Workshop on Signal Processing Systems (SIPS), 2010: 111-115.
俞文凯, 姚旭日, 刘雪峰, 等. 压缩传感用于极弱光计数成像 [J]. 光学 精密工程, 2012, 20(10): 2283-2292. YU W K, YAO X R, LIU X F, et al.. Compressed sensing for ultra-weak light counting imaging [J]. Opt. Precision Eng., 2012, 20(10): 2283-2292.(in Chinese)
DUNCAN D D, KIRKPATRICK S J. Algorithms for simulation of speckle (laser and otherwise) [C].Biomedical Optics (BiOS) 2008, International Society for Optics and Photonics, 2008,6855: 685505-685505-8.
CANDES E J. The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Mathematique, 2008, 346(9-10): 589-592.
TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666.