HU Ya-dong, HU Qiao-yun, SUN Bin etc. Double-angle polarized atmospheric corrector for remote sensing images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 652-659
HU Ya-dong, HU Qiao-yun, SUN Bin etc. Double-angle polarized atmospheric corrector for remote sensing images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(3): 652-659 DOI: 10.3788/OPE.20152303.0652.
Double-angle polarized atmospheric corrector for remote sensing images
A double-angle polarizing atmospheric corrector (DPAC) on an airborne platform is established for the quantification of remote sensing data. This sensor acquires spectral
angle and polarization information in image areas by time synchronization and space covering to implement the high-precision retrieval of aerosols and water vapors. Then
by taking these atmospheric parameters obtained by atmospheric retrieval as an input
the high-precision atmospheric correction for optical remote sensing images is achieved with a radiation transfer model. The DPAC has two detecting directions
one is along the nadir angle (0°) and the other is a forward angle (55°). It covers 8 wavebands ranging from 0.49 μm to 2.25 μm
among which five wavebands are designed for polarizing measurement. To overcome the polarization measurement errors caused by detection target inconsistent
the higher precision and integrated structure is designed to ensure the field overlap accuracy of polarization detection channels. The results of lab calibration and test show that the viewing field coincidence is better than 95% and the polarization accuracy is better than 1% ( DoLP=0.3)
which meets the requirements of the DPAC for specifications.
关键词
Keywords
references
韩启金, 傅俏燕, 张学文, 等. 高分一号卫星宽视场成像仪的高频次辐射定标 [J]. 光学 精密工程, 2014, 22(7):1707-1714. HAN Q J, FU Q Y, ZHANG X W, et al.. High-frequency radiometric calibration for wide field-of-view sensor of GF-1 satellite [J]. Opt. Precision Eng., 2014, 22(7):1707-1714. (in Chinese)
曲艺. 大气光学遥感监测技术现状与发展趋势 [J]. 中国光学, 2013, 6(6):834-840. QU Y. Technical status and development tendency of atmosphere optical remote and monitoring [J]. Chinese Optics, 2013, 6(6):834-840. (in Chinese)
张晶, 王淑荣, 黄煜, 等. 临边成像光谱仪的发展现状与进展 [J]. 中国光学, 2013, 6(5):692-700. ZHANG J, WANG SH R, HUANG Y, et al.. Status and development of limb imaging spectrometers [J]. Chinese Optics, 2013, 6(5):692-700. (in Chinese)
林兆祥, 吴祺, 黎伟, 等. 差分吸收光谱技术在地质录井中的应用研究 [J]. 光学 精密工程, 2013, 21(12):3037-3042. LIN ZH X, WU Q, LI W, et al.. Application of differential optical absorption spectroscopy to geological logging [J]. Opt. Precision Eng., 2013, 21(12):3037-3042. (in Chinese)
梁顺林, 李小文, 王锦池, 等. 定量遥感:理念与算法 [M]. 北京:科学出版社, 2013. LIANG SH L, LI X W, WANG J CH, et al.. Remote Sensing:Concept and Algorithm [M]. Beijing:Science Press, 2013. (in Chinese)
胡顺石, 张立福, 佘晓君, 等. 遥感影像大气校正通用查找表的设计与插值算法 [J]. 遥感学报, 2014, 18(1):45-60. HU SH SH, ZHANG L F, SHE X J, et al.. Design and interpolation of a general look-up table for remote sensing image atmospheric correction [J]. Journal of Remote Sensing, 2014, 18(1):45-60. (in Chinese)
何立明, 阎广建, 王桥, 等. 光学遥感大气订正模型及其相关问题分析 [J]. 地理信息科学, 2005, 7(4):110-115. HE L M, YAN G J, WANG Q, et al.. Models and its analysis about the atmospheric correction of optical remote sensing imagery [J]. Geo-information Science, 2005, 7(4):110-115. (in Chinese)
SIMON R N, TORMOS T, DANIS P A. Retrieving water surface temperature from archive LANDSAT thermal infrared data:application of the mono-channel atmospheric correction algorithm over two freshwater reservoirs [J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 30:247-250.
SHIMODA H. Overview of Japanese earth observation programs [J]. SPIE, 2013, 8889:888902.
PACIFICI F. An automatic atmospheric compensation algorithm for very high spatial resolution imagery [R]. Digital Globe, 2014.
陈良富, 李莘莘, 陶金花, 等. 气溶胶遥感定量反演研究及应用 [M]. 北京:科学出版社, 2011. CHEN L F, LI SH SH, CH J H, et al.. Rearch and Application on Quantitative Retrieval of Aerosol Remote Sensing [M]. Beijing:Science Press, 2011. (in Chinese)
CAIRNS B, RUSSELLB E E. Research scanning polarimeter and airborne usage for remote sensing of aerosols [J]. SPIE, 2003, 5158:33-44.
MEYER K, PLATNICK S. Utilizing the MODIS 1. 38 μm channel for cirrus cloud optical thickness retrievals:algorithm and retrieval uncertainties [J]. Geophys, 2010:115.
TYO J S. Design of optimal polarimeters:maximization of signal-to-noise ratio and minimization of systematic error [J]. Optical Society of America, 2002, 42(4):619-630.
Earth observing scanning polarimeter (EOSP) phase-b final report [R]. Santa Barbara Research Center, 1990.
宋茂新, 孙斌, 孙晓兵, 等. 航空多角度偏振辐射及的偏振定标 [J]. 光学 精密工程, 2012, 20(6):1153-1158. SONG M X, SUN B, SUN X B, et al.. Polarization calibration of aireborne muti-angle polarimetric radiometer [J]. Opt. Precision Eng., 2012, 20(6):1153-1158. (in Chinese)
RICHARD J, PERALTA, NARDELL C, et al.. Aerosol polarimetry sensor for the glory mission [J]. SPIE, 2007, 67865L:1-17.
Laboratoire D'optique Atmospherique-Univeriste Sciences et Technologies de Lille. Polarizing Box Polbox User's Guide [R]. LOA-Laboratoired Optique Atmosphérique, 1-15.