WU Jian-wei, YUAN Yong, CUI Ji-wen etc. Design and test of macro-micro coupling system for dual-stage lithography[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1673-1680
WU Jian-wei, YUAN Yong, CUI Ji-wen etc. Design and test of macro-micro coupling system for dual-stage lithography[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1673-1680 DOI: 10.3788/OPE.20152306.1673.
Design and test of macro-micro coupling system for dual-stage lithography
搭建了抓卡装置下夹板运动测量实验平台和锁紧力测量实验平台.实验结果表明:抓卡装置下夹板的运动行程大于2 mm
能够保证宏动系统和微动台交接过程的安全性.抓卡装置的开启时间为350 ms
快速缓冲锁紧时间为850 ms
可承载的
X
向驱动力大于700 N.该系统满足双工件台工作及换台过程对可靠性和快速性的要求.
Abstract
To reduce the swap time of wafer stage in a dual-stage lithography
and to guarantee the connection reliability between a long stroke system and the wafer stage
a macro-micro coupling system of dual-stage lithography was designed. On the basis of compliance mechanical theory
the fast gripper of coupling system was designed to realize the compactedness of the system
and its locking force was analyzed. A flexible mechanism of the fast gripper was designed
including a flexible lever and a clamp reset unit
then they were analyzed by finite element method. The pneumatic system in the fast gripper was designed. To guarantee the rapidity and safety in the locking process of coupling device
the pneumatic system could realize three dynamic locking process
and complete the buffer locking of the fast gripper. Finally
the experiments of clamp motion test and the clamping force test were performed. Experimental results indicate that the stroke of the clamp is greater than 2 mm
which meets the safety needs of stroke system and wafer stage. Moreover
the opening time and fast buffer closing time of the clamp coupling mechanism are 350 ms and 850 ms respectively
and can bear
X
direction driving force more than 700 N. The coupling system ensures the reliability of the working process and rapidity of wafer stage swap process.
关键词
Keywords
references
BROERS A N. Resolution, overlay, and field size for lithography systems [J].Electron Devices Meeting, 1981, 28(11): 1268-1278.
武志鹏, 陈兴林, 李欣,等. 双工件台光刻机换台过程的轨迹规划及控制[J]. 哈尔滨工业大学学报,2013,45(3):7-13. WU ZH P, CHEN X L, LI X, et al.. Trajectory planning and control method for wafer stage exchange process of dual-stage lithography [J].Journal of Harbin Institute of Technology, 2013,45(3):7-13. (in Chinese)
袁琼雁, 王向朝. 国际主流光刻机研发的最新进展[J]. 激光与光电子学进展,2007, 44(1):57-64. YUAN Q Y,WANG X CH. Recent development of international mainstream lithographic tools [J].Laser & Optoelectronics Progress,2007, 44(1): 57-64. (in Chinese)
BOONMAN M, VIN C V D, TEMPELAARS S,et al.. The performance advantages of a dual stage system [J]. Optical Microlithography, 2004: 743.
BOUDEWIJN G S, TOM C, RICHARD C J C, et al.. Performance results of a new generation of 300mm lithography systems [C]. Proceedings of SPIE, 2001, 544-557.
彭袆帆, 袁波, 曹向群. 光刻机技术现状及发展趋势[J]. 光学仪器, 2010, 32(4): 80-85. PENG Y F, YUAN B, CAO X Q. Technical status and developing trend of lithographic tools [J].Optical Instruments,2010, 32(4): 80-85. (in Chinese)
ENOMOTO M, SHIMOAOKI T, NAFUS K, et al.. Investigation of processing performance and requirements for next generation lithography cluster tools[C]. Proceedings of SPIE. Bellingham WA:SPIE, 2011, 7972:79722X1-79722XI1.
何煦, 向阳. 数字横向剪切干涉仪相移技术[J]. 光学 精密工程, 2013, 21(9): 2244-2251. HE X,XIANG Y. Phase-shifting technology of digital lateral shearing interferometer [J]. Opt. Precision Eng., 2013,21(9): 2244-2251 (in Chinese)
YIM BUN P K, ENGELBERTUS A F, et al.. Crash prevention in positioning apparatus for use in lithographic projection appratus:US.6498350B2 [P]. 2002.
袁志扬, 李巍, 吴小传. 双工件台夹持机构:中国,CN102487030A [P]. 2010. YUAN ZH Y, LI W, WU X CH.Clamping mechanism of Dual stage,China:CN102487030A [P].2002.
游群. 直线电机驱动的绿色夹具系统研究[D]. 苏州:苏州大学, 2009. YOU Q. Research on the green clamping device system driven by the linear motor [D]. Suzhou: Soochow University, 2009.(in Chinese)
刘丽莉. 减速电机驱动的绿色夹具系统研究[D]. 苏州:苏州大学, 2011. LIU L L. Study on green clamping system driven by gear motor [D]. Suzhou: Soochow University, 2011.(in Chinese)
LOBONTIU N, CULLIN M. In-plane elastic response of two-segment circular-axis symmetric notch flexure hinges: The right circular design [J]. Precision Engineering, 2013, 37: 542-555.
姚建涛, 李立建, 杨维, 等. 直圆柔性球铰柔度矩阵的解析计算[J]. 光学 精密工程,2014, 22(7): 1857-1863. YAO J T, LI L J, YANG W, et al.. Analytical calculation of compliance matrix for right-circular flexure spherical hinge [J]. Opt. Precision Eng., 2014, 22(7):1857-1863.(in Chinese)
马立, 谢炜, 刘波, 等. 柔性铰链微定位平台的设计[J]. 光学 精密工程, 2014, 22(2): 338-345. MA L, XIE W, LIU B, et al.. Design of micro-positioning stage with flexure hinge [J].Opt. Precision Eng., 2014, 22(2):338-345.(in Chinese)
WANG R Q, ZHOU X Q, ZHU Z W. Development of a novel sort of exponent-sine-shaped flexure hinges [J]. Review of Scientific Instruments, 2013,84(9):1-11.
赵磊, 巩岩, 赵阳. 光刻投影物镜中的透镜X-Y柔性微动调整机构[J]. 光学 精密工程,2013, 21(6): 1425-1433. ZHAO L, GONG Y, ZHAO Y. Flexure-based X-Y micro-motion mechanism used in lithographic lens [J]. Opt. Precision Eng., 2013,21(6): 1425-1433. (in Chinese)