L&#220, Cheng, LIU Zi-yun etc. Application of generalized radial basis function neural network to thermal error modeling[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1705-1713
L&#220, Cheng, LIU Zi-yun etc. Application of generalized radial basis function neural network to thermal error modeling[J]. Editorial Office of Optics and Precision Engineering, 2015,23(6): 1705-1713 DOI: 10.3788/OPE.20152306.1705.
Application of generalized radial basis function neural network to thermal error modeling
In considering of the lower efficiency and worse prediction accuracy of the existing thermal error modeling methods
a generalized Radial Basis Function (RBF) neural network modeling approach was proposed to establish the thermal error model of Numerical Control(NC) machine tools. The model theory and the corresponding steps based on this method were discussed. An experiment on the spindle box of a NC guide rail grinder was performed
and two groups of independent thermal error data were obtained by setting twelve critical temperature measuring points of spindle thermal error. One group of the data was used for building the thermal error model of the spindle box system based on generalized RBF neural network method and the other was used for verifying the correction of the model. The study results show that the thermal error model based on generalized RBF neural network method has high prediction precision and good generalization ability. By comparing the generalized RBF neural network method with traditional RBF neural network modeling method
the former shows better efficiency
robustness and prediction capacity
and it is an effective modeling method for the real-time thermal error compensation of NC machine tools.
关键词
Keywords
references
RAMESH R, MANNAN M A, POO A N. Error compensation in machine tools-a review: Part II: thermal errors [J]. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1257-1284.
阳红, 方辉, 刘立新, 等. 基于热误差神经网络预测模型的机床重点热刚度辨识方法研究[J]. 机械工程学报, 2011, 47(11): 117-124. YANG H, FANG H, LIU L X, et al.. Method of key thermal stiffness identification on a machine tool based on the thermal errors neural network prediction model [J]. Journal of Mechanical Engineering, 2011, 47(11): 117-124. (in Chinese)
田良巨. 数控加工中心电主轴热误差研究[D]. 天津: 天津大学, 2011. TIAN L J. Motorized spindle thermal error research of CNC machining center [D]. Tianjin: Tianjin University, 2011. (in Chinese)
TAN K K, HUANG S N, SEET H L. Geometrical error compensation of precision motion systems using radial basis function [J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(5): 984-991.
YANG S, YUAN J, NI J. The improvement of thermal error modeling and compensation on machine tools by CMAC neural network [J]. International Journal of Machine Tools and Manufacture, 1996, 36(4): 527-537.
满忠伟, 汪世益. 基于神经网络的机床--工件系统热误差补偿技术研究[J]. 制造技术与机床, 2011(7): 99-102. MAN ZH W, WANG SH Y. Study of thermal error compensation on the system of machine tool and work-piece based on neural network [J]. Manufacturing Technology & Machine Tools, 2011(7): 99-102. (in Chinese)
张毅. 数控机床误差测量、建模及网络群控实时补偿系统研究[D]. 上海: 上海交通大学, 2013. ZHANG Y.Error measuring, modeling and network group control real-time compensation system research of NC machine tool [D]. Shanghai: Shanghai Jiaotong University, 2013. (in Chinese)
ILIYAS S A, ELSHAFEI M, HABIB M A, et al.. RBF neural network inferential sensor for process emission monitoring [J]. Control Engineering Practice, 2013, 21(7): 962-970.
YANG H, NI J. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error [J]. International Journal of Machine Tools & Manufacture, 2005, 45(4-5): 455-465.
ER M J, WU S Q, LU J, et al.. Face recognition with radial basis function (RBF) neural networks [J]. IEEE Transactions on Neural Networks, 2002, 13(3): 697-710.
兰天鸽, 方勇华, 熊伟, 等. 自构造RBF神经网络及其参数优化[J]. 计算机工程, 2008, 33(9): 200-202. LAN T E, FANG Y H, XIONG W, et al.. Self-growing RBF neural networks and parameters optimization [J]. Computer Engineering, 2008, 33(9): 200-202. (in Chinese)
BAEK J Y, PARK B J, OH S K. The design of polynomial RBF neural network by means of fuzzy inference system and its optimization [J]. Transactions of the Korean Institute of Electrical Engineers, 2009, 58(2): 399-406.
MOODY J, DARKEN C J. Fast learning in networks of locally-tuned processing units [J]. Neural Computation, 1989, 1(2): 281-294.
吴月明, 王益群, 李莉. BP神经网络与广义RBF神经网络在产品寿命分布模型识别中的应用研究[J]. 中国机械工程, 2006, 20(17): 1012-1019. WU Y M, WANG Y Q, LI L. Application study on BP network and generalized RBF network in estimating distribution model of mechanical products [J]. China Mechanical Engineering, 2006, 20(17): 1012-1019. (in Chinese)
党开放, 杨利彪, 林廷圻. 一种新型的广义RBF神经网络及其训练方法[J]. 计算技术与自动化, 2007, 26(1): 9-13. DANG K F, YANG L B, LIN T Q. A new type of general RBF neural network and its training method [J]. Computing Technology and Automation, 2007, 26(1): 9-13. (in Chinese)
ÇAYDAŞ U, HASÇALIK A. Use of the grey relational analysis to determine optimum laser cutting parameters with multi-performance characteristics [J]. Optics and Laser Technology, 2008, 40(7): 987-994.
余治民, 刘子建, 艾彦迪, 等. 基于神经模糊控制理论的数控机床热误差建模[J]. 中国机械工程, 2014, 25(16): 2225-2231. YU ZH M, LIU Z J, AI Y D, et al.. Thermal error modeling of NC machine tool using neural fuzzy control theory [J]. China Mechanical Engineering, 2014, 25(16): 2225-2231. (in Chinese)
杜正春, 杨建国, 窦小龙, 等. 基于RBF神经网络的数控车床热误差建模[J]. 上海交通大学学报, 2003, 37(1): 26-29. DU ZH CH, YANG J G, DOU X L, et al.. Thermal error modeling of CNC turning center using radial basis function neural network [J]. Journal of Shanghai Jiaotong University, 2003, 37(1): 26-29. (in Chinese)
MAILLARD E P, GUERIOT D. RBF neural network, basis functions and genetic algorithm [C].IEEE International Conference on. Neural Networks,1997,4: 2187-2192.