SHAN Ze-biao, SHI Yao-wu, SHAN Ze-tao etc. Joint estimation of DOA and Doppler frequency by SQP[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2079-2085
SHAN Ze-biao, SHI Yao-wu, SHAN Ze-tao etc. Joint estimation of DOA and Doppler frequency by SQP[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2079-2085 DOI: 10.3788/OPE.20152307.2079.
Joint estimation of DOA and Doppler frequency by SQP
在信噪比为0 dB时估计两个目标信号源的DOA与多普勒频率的均方根误差分别为0.263 6°和0.007 6 rad
基本达到了阵列信号处理中参数联合估计方法的设计要求。
Abstract
To estimate the Direction of Arrival (DOA) and Doppler frequency in array signal processing accurately and quickly
a joint spectrum estimation method based on maximum likelihood algorithm and Sequence Quadratic Program(SQP)was presented. With this method
a space-time signal model was used to construct a generalized array manifold matrix containing the information of DOAs and Doppler frequency based on the Hankel matrix
the joint spectrum was fitted using maximum likelihood algorithm
so that the joint parameter estimation was converted to multidimensional nonlinear function optimization. Then
the SQP algorithm was used to solve and optimize the maximum likelihood function and to obtain the estimation of DOAs and Doppler frequency. Finally
the simulation results were compared with the SQP method
differential evolution method
genetic method and quantum particle swarm optimization method. Experimental results indicate that the Root Mean Square Error(RMSE) of DOAs and Doppler frequency estimation are 0.2636°and 0.0076 rad respectively under the condition of estimating two signal sources with 0 dB for SNR. It satisfies the requirements of design of joint parameter estimation method in the array signal processing.
关键词
Keywords
references
REDDY V V, NG B P, KHONG A W H. Derivative-constrained frequency-domain wideband DOA estimation [J]. Multidimensional Systems and Signal Processing, 2014, 25(1): 211-233.
ZHANG Z H, LIN J, SHI Y W. Application of artificial bee colony algorithm to maximum likelihood DOA estimation[J]. Journal of Bionic Engineering, 2013, 10(1):100-109.
张志成,温炎,石要武. 利用隔离小生境混合蛙跳方法联合估计波达方向和多普勒频率[J]. 光学 精密工程,2014,22(9): 2565-2571. ZHANG ZH CH, WEN Y, SHI Y W. Joint estimation of DOAs and Doppler frequency using isolation niche shuffled frog leaping algorithm [J]. Opt. Precision Eng., 2014, 22(9): 2565-2571. (in Chinese)
张志成, 林君, 石要武,等. 用加权子空间拟合和量子粒子群算法联合估计多普勒频率和波达方向[J]. 光学 精密工程, 2013, 21(9):2445-2451. ZHANG ZH CH, LIN J, SHI Y W. Joint estimation of Doppler and DOAs by WSF-QPSO method [J]. Opt. Precision Eng., 2013, 21(9):2445-2451. (in Chinese)
JACKSON L B, CHIEN C H. Frequency and bearing estimation by two-dimensional linear prediction[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Washington, DC, USA: ICASSP, 1979,4: 665-668.
LIN J D, FANG W H, WANG Y Y, et al.. FSF MUSIC for joint DOA and frequency estimation and its performance analysis[J]. IEEE Transactions on Signal Processing, 2006, 54(12): 4529-4542.
LEMMA A N, VAN D V A J, DEPRETTERE E F. Analysis of ESPRIT based joint angle-frequency estimation[C]. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Istanbul, Turkey: ICASSP, 2000: 3053-3056.
LEMMA A N, VAN D V A J, DEPRETTERE E F. Analysis of joint angle-frequency estimation using ESPRIT[J]. IEEE Transactions on Signal Processing, 2003, 51(5): 1264-1283.
ATHELEY F. Asymptotically decoupled angle-frequency estimation with sensor arrays[C]. The Thirty-Third Asilomar Conference on Signal, Systems and Computers, Pacific Grove, USA: ACSSC, 1999: 1098-1102.
王惠刚,刘强. 多普勒方位联合估计的蒙特卡洛算法[J]. 电子学报, 2009, 37(9):1965-1970. WANG H G, LIU Q. A Monte Carlo method for joint estimation of Dopplers and DOAs[J]. Acta Electronica Sinica, 2009, 37(9): 1965-1970. (in Chinese)
WANG H G, KAY S. Maximum likelihood angle-Doppler estimator using importance sampling[J]. IEEE Transactions on Aerospace and Electronics Systems, 2010, 46(2): 610-622.
岳武陵, 吴勇. 基于多目标优化的空间直线度误差评定[J]. 光学 精密工程, 2008, 16 (8):1423-1428. YUE W L, WU Y. Evaluation of spatial straightness errors based on multi-target optimization[J]. Opt. Precision Eng., 2008, 16(8): 1423-1428. (in Chinese)