LI Jing-yu, LIU Yan-ying, TIAN Rui etc. Probabilistic model single target tracking framework for video surveillance system[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2093-2099
LI Jing-yu, LIU Yan-ying, TIAN Rui etc. Probabilistic model single target tracking framework for video surveillance system[J]. Editorial Office of Optics and Precision Engineering, 2015,23(7): 2093-2099 DOI: 10.3788/OPE.20152307.2093.
Probabilistic model single target tracking framework for video surveillance system
According to characteristics of video surveillance and strong mobility of tracking targets
a novel target tracking framework based on a probability model was proposed. The current standard particle filtering target algorithm was improved based on a target appearance model
a systemic dynamic model
and a systemic observation model. Firstly
the target appearance model was established by taking the distribution of human eye cell into account to improve its resistance capability for partial occlusion of local occlusion. Then
the systemic dynamic model based on the adaptive target movement was built to improve the robustness of tracking framework for the fast moving target. Finally
the systemic observation model with online update was established to prevent the tracking shift when the target faced the occlusion
illumination changes
severe deformation
etc.
effectively. Experimental results show that the proposed algorithm achieves 98% of correct tracking rate
and the average tracking error is less than 6 pixels. The proposed method satisfies the video surveillance system require ments for stabilization
reliability
higher precision
less computing cost
as well as strong anti-jamming.
关键词
Keywords
references
HARTLEY R, ZISSERMAN A. Multiple View Geometry in Computer Vision [M]. Cambridge: Cambridge University Press, 2003, 1:150.
GORDON N. J., SALMOND D. J., Smith A. F. M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[C]. IEEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.
ARULAMPALAM M S, MASKELL S, GORDON N, et al.. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
JIA X, LU H, YANG M. Visual tracking via adaptive structural local sparse appearance model[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2012: 1822-1829.
赵鹏,沈庭芝,单宝堂. 一种基于粒子滤波的无人机电视导引系统目标跟踪算法 [J]. 光学 精密工程,2008, 16(1):134-140. ZHAO P, SHEN T ZH, SHAN B T. An object tracking algorithm for TV guiding system of UAV based on particle filter [J]. Opt. Precision Eng., 2008, 16(1):134-140. (in Chinese)
陈东成,朱明,高文,等. 在线加权多示例学习实时目标跟踪 [J]. 光学 精密工程, 2014, 22(6): 1661-1667. CHEN D CH, ZHU M, GAO W, et al.. Real-time object tracking via online weighted multiple instance learning [J]. Opt. Precision Eng., 2014, 22(6): 1661-1667. (in Chinese)
杜超,刘伟宁,刘恋. 一种基于卡尔曼滤波及粒子滤波的目标跟踪算法 [J]. 液晶与显示, 2011, 26(3): 384-389. DU C, LIU W N, LIU L. Target tracking algorithm based on Kalman filter and particle filter [J]. Chinese Journal of Liquid Crystals and Displays, 2011, 26(3): 384-389. (in Chinese)
宋策, 张葆,尹传历. 适于机载环境对地目标跟踪的粒子滤波设计 [J]. 光学 精密工程,2014, 22(4):1037-1047. SONG C, ZHANG B, YIN CH L. Particle filter design for tracking ground targets in airborne environment [J]. Opt. Precision Eng., 2014, 22(4):1037-1047. (in Chinese)
ISARD M,BLAKE A. Condensation-Conditional density propagation for visual tracking [J]. Int. J. Comput. Vis.. 1998, 29(1): 5-28.
王书朋,姬红兵. 用于目标跟踪的自适应粒子滤波算法[J]. 系统仿真学报, 2010, 22(3): 630-633. WANG SH P, JI H B. Adaptive particle filtering for efficient object tracking [J]. Journal of System Simulation, 2010, 22(3): 630-633. (in Chiniese)
ROSS D, LIM J, LIN R, et al.. Incremental learning for robust visual tracking [J]. Internat. J. Comput. Vision, 2008, 77 (3): 125-141.