XIE Jin-jin, LIU Gang, WEN Tong. Composite compensation for load torque of active magnetic bearing in DGMSCMG[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2211-2219
XIE Jin-jin, LIU Gang, WEN Tong. Composite compensation for load torque of active magnetic bearing in DGMSCMG[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2211-2219 DOI: 10.3788/OPE.20152308.2211.
Composite compensation for load torque of active magnetic bearing in DGMSCMG
By combining with the angular rate feedforward controller and a load torque observer
a composite compensation method for the load torque of an active magnetic bearing was proposed to improve the suspension accuracy of the magnetically suspended rotor in a Double-gimbal Magnetically Suspended Control Moment Gyro(DGMSCMG). The dynamical model of the magnetically suspended rotor in the DGMSCMG was established
and the load torque of the active magnetic bearing with inner and outer gimbal movements was analyzed. Then the composite compensation control method based on the angular rate feedforward controller and the load torque observer was designed
and the system stability after compensation was discussed. Finally
the performance of the proposed method was verified by a prototype developed by the our laboratory. The experimental results show that the displacement jitters at the end
A
x
of the rotor have reduced to 44.8% when angular rates of the gimbal starts from 120(°)/s
2
to 10(°)/s. Moreover
the displacement jitters have reduced to 23.4% and 35.5% at the end
A
x
and end
B
y
of the rotor when angular rates of the gimbal are excited by the sinusoidal signal with the amplitude 10(°)/s and frequency of 10 Hz
respectively. The results indicate that the proposed method increases the control accuracy of the magnetically suspended rotor with the load torque by gimbal movements.
关键词
Keywords
references
陈茂胜, 金光, 安源,等. 采用自适应pi控制的单框架控制力矩陀螺角动量飞轮系统的设计[J]. 光学 精密工程, 2011, 19(5): 1075-1081. CHEN M SH, JIN G, AN Y, et al.. Design of angular momentum wheel in SGCMG using adaptive compensation PI control [J]. Opt. Precision Eng., 2011, 19(5): 1075-1081. (in Chinese)
谷松, 贾继强, 金光. 快速机动小卫星执行机构研究[J]. 光学 精密工程,2008, 16(8): 1540-1545. GU S, JIA J G, JIN G. Research on momentum management of fast slew maneuver small satellite[J]. Opt. Precision Eng., 2008, 16(8): 1540-1545. (in Chinese)
ABBAS H S, ALI A, HASHEMI S M, et al.. LPV state-feedback control of a control moment gyroscope [J]. Control Engineering Practice, 2014, 24: 129-137.
REN Y, FANG J C. High-precision and Strong-robustness control for an MSCMG based on modal separation and rotation motion decoupling strategy [J]. IEEE Transactions on Industrial Electronics, 2014, 61(3):1539-1551.
魏彤, 房建成. 高速大惯量磁悬浮转子系统章动交叉控制的保相角裕度设计[J]. 光学 精密工程, 2007, 15(3): 858-865. WEI T, FANG J CH. Proof-phase-margin design of nutation cross-feedback control in magnetically suspended high-speed rotor system with large rotary inertia [J]. Opt. Precision Eng., 2007, 15(3): 858-865. (in Chinese)
徐洪亮, 翟传润, 战兴群, 等. 双框架控制力矩陀螺伪逆控制律设计及仿真[J]. 上海交通大学学报, 2008, 42(5):851-855. XU H L, ZHAI CH R, ZHAN X Q, et al.. Design and simulation of pseudo-Inverse control law for double gimbal control moment gyro [J]. Journal of Shanghai Jiaotong University, 2008, 42(5): 851-855. (in Chinese)
FANG J C, ZHENG SH Q, HAN B CH. AMB vibration control for structural resonance of double-gimbal control moment gyro with high-speed magnetically suspended rotor [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 32-43.
FANG J C, REN Y. High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4331-4342.
SUZUKI Y. Acceleration feedforward control for active magnetic bearing systems excited by ground motion[C]. IEE Proceedings-Control Theory and Applications, 1998, 145(2): 113-118.
KANG M S, YOON W H. Acceleration feedforward control in active magnetic bearing system subject to base motion by filtered-X LMS algorithm [J]. IEEE Transactions on Control Systems Technology, 2006, 14(1):134-140.
魏彤, 房建成. 磁悬浮控制力矩陀螺的动框架效应及其角速率前馈控制方法研究[J]. 宇航学报, 2005, 26(1): 19-23. WEI T, FANG J CH. Moving-gimbal effects and angular rate feedforward control in magnetically suspended rotor system of CMG[J]. Journal of Astronautics, 2005, 26(1):19-23. (in Chinese)
郑世强, 房建成, 韩邦成. 提高双框架磁悬浮 CMG 动态响应能力的磁轴承补偿控制方法与试验研究[J]. 机械工程学报,2010, 46(20),: 22-28. ZHENG SH Q, FANG J CH, HAN B CH. Compensation control method and experimental study of magnetic bearing to improve dynamic response ability of double gimbal magnetically suspended control moment gyroscope[J]. Journal of Mechanical Engineering, 2010, 46(20),:22-28. (in Chinese)
魏彤, 房建成, 刘珠荣. 双框架磁悬浮控制力矩陀螺动框架效应补偿方法[J]. 机械工程学报, 2010, 46(2): 159-165. WEI T, FANG J CH, LIU ZH R. Moving-gimbal effects compensation of double gimbal magnetically suspended control moment gyroscope based on compound control [J]. Journal of Mechanical Engineering, 2010, 46(2),:159-165. (in Chinese)
丁力, 房建成, 魏彤, 等. 一种抑制扰动的轴向磁轴承鲁棒控制新方法[J]. 北京航空航天大学学报, 2010, 36(4): 420-423. DING L, FANG J CH, WEI T, et al.. Robust controlmethod for disturbance rejection on ax ia lmagnetic bearing [J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(4): 420-423. (in Chinese)
DESHPANDE V S, MOHAN B, SHENDGE P, et al.. Disturbance observer based sliding mode control of active suspension systems[J]. Journal of Sound and Vibration, 2014: 2281-2296,.
JASTRZEBSKI R P, HYNYNEN K M, SMI-RNOV A. H∞ control of active magnetic suspension [J]. Mechanical Systems and Signal Processing, 2010, 24: 995-1006.
RIEMANN B, PERINI E A, CAVALCA K L, et al.. Oil whip instability control using μ-synthesis technique on a magnetic actuator[J]. Journal of sound and vibration, 2013, 332: 654-673.
KANG M S, LYOU J, LEE J K. Sliding mode control for an active magnetic bearing system subject to base motion[J]. Mechatronics, 2010, 20: 171-178.
CHEN W H, BALLANCE D J, GAWTHROP P J, et al. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4): 932-938.