CHENG Shuai, CAO Yong-gang, SUN Jun-xi etc. Efficient target tracking by TLD based on binary normed gradients[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2339-2348
CHENG Shuai, CAO Yong-gang, SUN Jun-xi etc. Efficient target tracking by TLD based on binary normed gradients[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2339-2348 DOI: 10.3788/OPE.20152308.2339.
Efficient target tracking by TLD based on binary normed gradients
To improve the tracking precision and processing speed of the Tracking-Learning-Detection(TLD) algorithm under a complex environment
an efficient TLD target tracking algorithm based on BInary Normed Gradient(BING) algorithm was proposed. The local tracker failure predicting method based on spatial-temporal context and the global motion model estimation algorithm was introduced into the tracker to improve its precision and robustness. Then
the BING algorithm was used to replace a sliding window for searching the target to detect the candidate target by combining with a cascaded classifier
so that to reduce the search space and improve the processing speed of the detector. The sample weight was integrated into the online learning procedure to improve the accuracy of the classifier and to alleviate the drift to some extents. The experimental results on variant sequences demonstrate that the accurate rate and the frame rate of the improved TLD are 85% and 19.79 frame/s
respectively. Compared with original TLD and state-of-the-art tracking algorithm under the complex environment
the improved TLD has the superior performance on robustness
tracking precision and tracking speeds.
关键词
Keywords
references
郭敬明,何昕,魏仲慧. 基于在线支持向量机的Mean Shift彩色图像跟踪[J]. 液晶与显示, 2014, 29(1): 120-128. GUO J M,HE X,WEI ZH H. New mean shift tracking for color image based on online support vector machine[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(1): 120-128. (in Chinese)
WU Y, LIM J, YANG M H. Online object tracking: A benchmark [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OR, Portland: IEEE, 2013: 2411-2418.
ROSS D A, LIM J, LIN R S, et al.. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3):125-141.
李静宇,王延杰. 基于子空间的目标跟踪算法研究[J]. 液晶与显示, 2014, 29(4): 617-622. LI J Y,WANG Y J. Subspace based target tracking algorithm [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(4): 617-622. (in Chinese)
LI H, SHEN C, SHI Q. Real-time visual tracking using compressive sensing[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI: IEEE, 2011:1305-1312.
SEVILLA-LARA L, LEARNED-MILLER E. Distribution fields for tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI: IEEE, 2012:1910-1917.
GRABNER H, GRABNER M, BISCHOF H. Real-time tracking via on-line boosting[C]. Proceedings of British Machine Vision Conference, Edinburgh, Scotland: BMVA, 2006, 47-56.
GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line boosting for robust tracking[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany: Springer, 2008: 234-247.
KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York,USA:IEEE, 2010: 49-56.
STALDER S, GRABNER H, VAN G L. Beyond semi-supervised tracking: tracking should be as simple as detection, but not simpler than recognition [C]. Proceedings of International Conference on Computer Vision Workshop, Kyoto, Japan, 2009,1409-1416.
陈东成, 朱明, 高文,等. 在线加权多示例学习实时目标跟踪[J]. 光学 精密工程,2014,22(6):1661-1667. CHEN D CH, ZHU M, GAO W, et al.. Real-time object tracking via online weighted multiple instance learning[J]. Opt. Precision Eng., 2014, 22(6): 1661-1667. (in Chinese)
BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.
ZHANGA K, SONG H. Real-time visual tracking via online weighted multiple instance learning [J]. Pattern Recognition, 2013, 46(1): 397-411.
KALAL Z, MIKOLAJCZYK K,MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422.
周鑫,钱秋朦,叶永强,等. 改进后的TLD视频目标跟踪方法[J]. 中国图象图形学报, 2013,18(9): 1115-1123. ZHOU X, QIAN Q M,YE Y Q, et al.. Improved TLD visual target tracking algorithm [J]. Journal of Image and Graphics, 2013, 18(9):1115-1123. (in Chinese)
江伟坚,郭躬德. 复杂环境下高效物体跟踪级联分类器[J]. 中国图象图形学报,2014, 19(2): 253-265. JIANG W J, GUO G D. Efficient cascade classifier for object tracking in complex conditions[J]. Journal of Image and Graphics, 2014,19(2): 253-265. (in Chinese)
VOJIR T, MATAS J. Robustifying the flock of trackers[C]. Proceedings of Computer Vision Winter Workshop, Graz, Austria,2011:91-97.
ENDRES I, HOIEM D. Category independent object proposals[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany, 2010:575-588.
ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012: 34(11): 2189-2202.
UIJLINGS J, VAN D S, GEVERS T, et al.. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
CHENG M M, ZHANG Z M, LIN W Y. BING: binarized normed gradients for objectness estimation at 300fps [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Philip, Torr: IEEE, 2014.
BOTTERILL T, MILLS S, GREEN R D. New conditional sampling strategies for speeded-up RANSAC[J]. British Machine Vision Conference, 2009: 1-11.
KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking [C]. Proceedings of IEEE International Conference on Computer Vision Workshop, Kyoto, Japan: IEEE, 2009: 1417-1424.
ZHANG Z, WARRELL J, TORR P H. Proposal generation for object detection using cascaded ranking SVMS[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI :IEEE, 2011: 1497-1504.
NEUBECK A, VAN G L. Efficient non-maximum suppression[C]. Proceedings of International Conference on Pattern Recognition, Hong Kong, China, 2006: 850-855.
YU Q, DINH T B, MEDIONI G. Online tracking and reacquisition using co-trained generative and discriminative trackers[C]. Proceedings of European Conference on Computer Vision, Marseille, France, 2008: 678-691.
STALDER S, GRABNER H, GOOL L V. Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition[C]. Proceedings of International Conference on Computer Vision Workshops, Kyoto, Japan: IEEE, 2009: 1409-1416.