GAO Fang, LIU Yu, GUO Shu-xu. Lossless compression of hyperspectral images using backward search in context window[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2376-2383
GAO Fang, LIU Yu, GUO Shu-xu. Lossless compression of hyperspectral images using backward search in context window[J]. Editorial Office of Optics and Precision Engineering, 2015,23(8): 2376-2383 DOI: 10.3788/OPE.20152308.2376.
Lossless compression of hyperspectral images using backward search in context window
An efficient lossless compression scheme of hyperspectral images based on one-band-prediction was proposed by using backward search in a context window to improve the compression ratio of the hyperspectral images. Firstly
the context window for a pixel to be tested was defined and the prediction reference value under testing was calculated. Then
the candidate predictors which were mostly closed to the prediction reference value were selected as the final prediction results of the pixel to be measured. Finally
the predicted residual image was coded by a first-order arithmetic to implement the image compression. The method proposed was used in the experiments on hyperspectral images from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 1997
and the results show that the method has obtained the best prediction results of backward search by optimizing the context window
equivalent coefficients and effective pixel thresholds. After coding by an arithmetic coder
the average compression ratio is 3.63。The method has a lower computing complexity and smaller memory requirements
and outperforms all other lossless compression schemes for hyperspectral images that have been previously reported.
关键词
Keywords
references
Free AVIRIS standard data products [EB/OL].http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
MIELIKAINEN J. Lossless compression of hyperspectral images using lookup tables [J]. IEEE Signal Processing Letters, 2006, 13(3):157-160.
HUANG B, SRIRAJA Y. Lossless compression of hyperspectral imagery via lookup tables with predictor selection [J]. Proceedings of SPIE, 2006, 6365:65650L-1-63650L-8.
MIELIKAINEN J, TOIVANEN P. Lossless compression of hyperspectral images using a quantized index to lookup tables [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3):474-478.
宋金伟,张忠伟,陈晓敏. 利用线性预测与查表法的高光谱图像压缩 [J]. 光学 精密工程,2013,21(8):2201-2208. SONG J W, ZHANG ZH W, CHEN X M. Hyperspectral imagery compression via linear prediction and lookup tables [J]. Opt. Precision Eng., 2013, 21(8):2201-2208.(in Chinese)
汤毅,辛勤,李纲,等. 基于内容的高光谱图像无损压缩 [J]. 光学 精密工程,2012,20(3):668-674. TANG Y, XIN Q, LI G, et al.. Lossless compression of hyperspectral images based on contents [J]. Opt. Precision Eng., 2012, 20(3):668-674.(in Chinese)
粘永健,辛勤,汤毅,等. 基于多波段预测的高光谱图像分布式无损压缩 [J]. 光学 精密工程,2012,20(4):906-912. NIAN Y J, XIN Q, TANG Y, et al.. Distributed lossless compression of hyperspectral images based on multi-band prediction [J]. Opt. Precision Eng., 2012, 20(4):906-912.(in Chinese)
尹传历,李嘉全. 基于位平面的嵌入式超光谱图像压缩系统 [J]. 液晶与显示,2012,27(2):245-249. YIN CH L, LI J Q. Embedded hyper spectral image compression system based on bit-plane [J]. Chinese Journal of Liquid Crystals and Displays, 2012, 27(2):245-249. (in Chinese)
殷亚男,王晓东,李丙玉. 基于预测和JPEG2000的MODIS红外辐射多光谱图像无损压缩算法 [J]. 液晶与显示,2013,28(6):922-926. YIN Y N, WANG X D, LI B Y. Lossless compression method based on prediction and JPEG2000 for MODIS emissive IR bands multispectral image [J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(6):922-926. (in Chinese)
KIELY A, KLIMESH M. Exploiting calibration-induced artifacts in lossless compression of hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2672-2678.
LIN CH CH, HWANG Y T. An efficient lossless compression scheme for hyperspectral images using two-stage prediction [J]. IEEE Geoscience Remote Sensing Letters, 2010, 7(3):558-562.
SONG J W, ZHANG ZH W, CHEN X M. Lossless compression of hyperspectral imagery via RLS filter [J]. Electronics Letters, 2013, 49(16):992-993.
MIELIKAINEN J, TOIVANEN P. Clustered DPCM for the lossless compression of hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12):2943-2946.
MIELIKAINEN J, HUANG B. Lossless compression of hyperspectral images using clustered linear prediction with adaptive prediction length [J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6):1118-1121.
WANG K Y, LIAO H L,LI Y S,et al.. Lossless compression of hyperspectral images using C-DPCM-APL with reference bands selection[J]. Proceedings of SPIE, 2014, 9124: 91240W-1-91240W-10.
MOFFAT A, NEAL R, WITTEN I H. Arithmetic coding revisited [C]. Data Compression Conference, 1995, 202-211.
ABERG J, SHTARKOV Y M, SMETTS B J M. Multialphabet coding with separate alphabet description [C]. Proceedings of Compression and Complexity of Sequences, 1997, 56-65.
ORLITSKY A, SANTHANAM N P, ZHANG J. Universal compression of memoryless sources over unknown alphabets [J]. IEEE Transactions on Information Theory, 2004, 50(7):1469-1481.
RIZZO F,CARPENTIERI B,MOTTA G, et al.. Low-complexity lossless compression of hyperspectral imagery via linear prediction [J]. IEEE Signal Processing Letters, 2005, 12(2):138-141.
KLIMESH M. Low-complexity adaptive lossless compression of hyperspectral imagery [J]. Proceedings of SPIE, 2006, 6300:63000N-1-63000N-9.
MAGLI E. Multiband lossless compression of hyperspectral images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):1168-1178.
AIAZZI B,AIPARONE L,BARONTI S, et al.. Crisp and fuzzy adaptive spectral predictions for lossless and near-lossless compression of hyperspectral imagery [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4):532-536.