Wu Zhi-qiang, YANG Liang, XIA Guo-ming etc. Force feedback close-loop detection of silicon micromachined gyroscope based on bandpass sigma delta modulator[J]. Editorial Office of Optics and Precision Engineering, 2015,23(9): 2540-2545
Wu Zhi-qiang, YANG Liang, XIA Guo-ming etc. Force feedback close-loop detection of silicon micromachined gyroscope based on bandpass sigma delta modulator[J]. Editorial Office of Optics and Precision Engineering, 2015,23(9): 2540-2545 DOI: 10.3788/OPE.20152309.2540.
Force feedback close-loop detection of silicon micromachined gyroscope based on bandpass sigma delta modulator
To enhance the performance of a silicon micromachined gyroscope
a force feedback close-loop detection method based on a fourth-order electromechanical bandpass Sigma Delta modulator(SDM) was researched. A simulation model was established based on Cascade Resonant Feed Forward(CRFF) structure of a resonator. Meanwhile
the loop parameters were calculated with the commercial software SD TOOLS. Then behavioral simulations were carried out with MATLAB/SIMULINK to test the results. The results suggest that the Signal to Noise Ratio(SNR) of the loop achieves 109.2 dB at the bandpass of 1 Hz
which meets the previous expectation. A force feedback close-loop detection system for the silicon micromachined gyroscope was designed by using a Field Programming Gate Array(FPGA) as the processing core
and the properties of gyroscope were tested. Experiments indicate that based on this detecting method and digital close-loop driving technology
the zero bias instability of the gyroscope achieves 1.15(°)/h
and the Angle Random Walk (ARW) is around 7.74×10
-2
(°)/√h. Meanwhile
the Signal and Noise Ratio(SNR) meets the designed specifications. These results verify the validity of the detecting technique. The method is conductive to improving the performance of the SMGs and extending their application fields.
关键词
Keywords
references
HENRION W, DISANZA L, LP M, et al.. Wide dynamic range direct accelerometer [C]. Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, 1990:153-157.
FEDDER G K, HOWE R T. Multimode digital control of a suspended polysilicon microstructure [J]. Journal of Microelectromechanical Systems, 1996, 5(4):283-297.
PETKOV V P. High-order sigma delta interface for micromachined inertial sensors [D]. California:University of California, Berkeley, 2004.
OBOE R, ANTONELLO R, LASALANDRA E, et al.. Control of a z-axis MEMS vibrational gyroscope [J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(4):364-370.
NEUL R, GOMEZ U M, KEHR K, et al.. Micromachined angular rate sensors for automotive applications [J].Sensors Journal, IEEE, 2007, 7(2):302-309.
PETKOV V P, BOSER B E. A fourth-order ΣΔ interface for micromachined inertial sensors [C]. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2004:320-321.
DONG Y, KRAFT M, HEDENSTIERNA N, et al.. Microgyroscope control system using a high-order band-pass continuous-time sigma-delta modulator [J]. Sensors and Actuators A:Physical, 2008, 145:299-305.
NORTHEMANN T, MAURER M, ROMBACH S, et al.. A digital interface for gyroscopes controlling the primary and secondary mode using bandpass sigma-delta modulation [J]. Sensors and Actuators A:Physical, 2010, 162(2):388-393.
NORSWORTHY S R, SCHREIER R, TEMES G C. Delta-sigma Data Converters:Theory, Design, and Simulation [M]. New York:IEEE press, 1997.
SCHREIER R, TEMES G C. Understanding Delta-sigma Data Converters [M].New Jersey:IEEE press, 2005.
DING H T, YANG Z C, WANG Z F, et al.. MEMS gyroscope control system using a band-pass continuous-time sigma-delta modulator[J].Science China Information Sciences, 2013, 56(10):1-10.
程剑平. 带通Σ-Δ调制器的研究和设计[D]. 南京:东南大学,2006. CHENG J P. Study and design of bandpass sigma delta modulator [D]. Nanjing:Southeast University, 2006. (in Chinese)
曾博. Sigma-Delta调制器的研究和设计[D]. 成都:电子科技大学, 2010. ZENG B.Research and design of the Sigma-Delta modulator [D]. Chengdu:University of Electronic Science and Technology of China, 2010.(in Chinese)
杨亮. 硅微机械陀螺数字化测控技术研究[D]. 南京:南京理工大学, 2013. YANG L.Research on digital measurement and control technology of silicon micro-machined gyroscope [D]. Nanjing:Nanjing University of Science and Technology, 2013.(in Chinese)
杨亮, 苏岩, 裘安萍, 等. 脉冲密度反馈对力平衡微机械陀螺的影响[J]. 光学 精密工程, 2013, 21(8):2087-2094. YANG L, SU Y, QIU A P, et al.. Effect of pulse density feedback on force balance micro machined gyroscope [J].Opt. Precision Eng., 2013,21(8):2087-2094.(in Chinese)
杨亮, 苏岩, 裘安萍, 等. 具有增益补偿功能的微机械陀螺数字化驱动闭环[J]. 光学 精密工程, 2014, 22(1):109-116. YANG L, SU Y, QIU A P, et al.. Digital drive closed-loop with gain compensation for micro-machined gyroscope [J].Opt. Precision Eng., 2014, 22(1):109-116.(in Chinese)
SCHREIER R.The Delta-Sigma Toolbox 6.0[CP]. 2004.
GYROS V. IEEE Standard Specification Format Guide and Test Procedure for Coriolis Vibratory Gyros. 2004.
邹学锋, 卢新艳. 基于Allan方差的MEMS陀螺仪性能评价方法[J]. 微纳电子技术, 2010, 47(8):490-493. ZOU X F, LU X Y. Estimate method of MEMS gyroscope performance based on Allan variance[J]. MEMS Device & Technology, 2010, 47(8):490-493.(in Chinese)
赵阳, 裘安萍, 施芹, 等. 微机械陀螺检测接口建模及前置放大器优化[J]. 光学 精密工程, 2013, 21(7):1734-1740. ZHAO Y, QIU A P, SHI Q, et al.. Modeling of sensing interface for micromachined gyroscope andits front-end optimization [J]. Opt. Precision Eng., 2013, 21(7):1734-1740.(in Chinese)
SONMEZOGLU S, ALPER S E, AKIN T. An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth [J]. Journal of Microelectromechanical Systems, 2014, 23(2):284-297.
CUI J, GUO Z, ZHAO Q, et al.. Force rebalance controller synthesis for a micromachined vibratory gyroscope based on sensitivity margin specifications [J]. Journal of microelectromechanical Systems, 2011, 20(6):1382-1394.
Online laser absorption spectroscopy detection of trace ethylene in coal pyrolysis
MEMS gyro denoising based on fuzzy interval threshold EMD
Temperature characteristics of quality factor of silicon micromachined gyroscope under high-vacuum environment
Spectral analysis and de-noising of MIMU raw measurement
Related Author
CAI Tingdong
QIU Xuanbing
LI Chuanliang
GONG Ting
TIAN Yali
SUN Xiaocong
LI Kailiang
MENG Xingxing
Related Institution
School of Applied Science, Taiyuan University of Science and Technology, Shanxi Precision Measurement and Online Testing Equipment Engineering Research Center, Shanxi Province Light Field Regulation and Integration Application Technology Innovation Center, Taiyuan University of Science and Technology
College of Physics and Electronic Engineering, Jiangsu Normal University
Automatic Control Research Institute, Lanzhou Jiaotong University
Gansu Provincial Key Laboratory of Traffic Information Engineering and Control
College of Electromechanical Engineering and Automation, National University of Defense Technology