WANG Meng-bi, ZHANG Gao-fei, YOU Zheng etc. High precision sliding mode control for micro-momentum wheel[J]. Editorial Office of Optics and Precision Engineering, 2015,23(9): 2553-2561
WANG Meng-bi, ZHANG Gao-fei, YOU Zheng etc. High precision sliding mode control for micro-momentum wheel[J]. Editorial Office of Optics and Precision Engineering, 2015,23(9): 2553-2561 DOI: 10.3788/OPE.20152309.2553.
High precision sliding mode control for micro-momentum wheel
The precision control of a micro-momentum wheel in micro-satellite was researched based on a sliding mode control algorithm. On the basis of the whole control system framework
the dynamic model of the micro-momentum wheel was analyzed. Combination of the ideal model and consideration of the interference factors such as ripple voltage
the uncertainty of friction coefficient
and disturbance torque
the dynamic model of micro-momentum wheel was improved. Then
sliding mode control algorithm was designed
and simulation control rate parameters were optimized. Through MATLAB simulation
sliding mode control and conventional PI control were compared for the torque control and speed control. Finally
a micro-momentum wheel prototype was designed. The simulation results show that the speed control precision of the micro-momentum wheel based on sliding mode control is ±0.5 r/min and it can accelerate from 0 to 2 000 r/min in 18 s
both are much better than that based on PI control. Experimental results demonstrate that the speed control precision of the micro-momentum wheel based on sliding mode control is ±0.9 r/min and it can accelerate from 0 to 2 000 r/min in 26 s. These results indicate that sliding mode control algorithm effectively overcomes the control interference factors of the micro-momentum wheel and improves the speed control precision
shortens the acceleration time.
关键词
Keywords
references
尤政,龚克,陆建华. 微小卫星的技术发展与思路[J]. 科技导报,2001(3):43-47. YOU ZH, GONG K, LU J H. Development of micro-satellite technology and its thinking [J].Science & Technology Review, 2001(3):43-47. (in Chinese)
陆建华,王京,龚克. 微小卫星技术发展及其应用[J]. 世界电信,2001,14(11):8-11. LU J H, WANG J, GONG K. Development and application of micro-satellite [J]. World Telecommunications, 2001, 14(11):8-11. (in Chinese)
范志涵,张召才. 国外小卫星最新发展研究[J]. 国际太空,2013,(8):20-29. FAN ZH H, ZHANG ZH C. The research for latest development of foreign microsatellite [J].Space International, 2013,(8):20-29.(in Chinese)
朱鲁青,张召才. 2013年国外微小卫星回顾[J]. 国际太空,2014,(2):38-43. ZHU L Q, ZHANG ZH C. The development of foreign microsatellite in 2013 [J].Space International, 2014,(2):38-43.(in Chinese)
ISMAIL Z, VARATHARAJOO R. A study of reaction wheel congurations for a 3-axis satellite attitude control [J]. Advances in Space Research, 2010, 45(6):750-759.
王辉,武俊峰,李胤,等. 小卫星用反作用飞轮系统设计[J]. 光学 精密工程, 2014, 22(2):331-337. WANG H, WU J F, LI Y, et al.. Micro/Nano technology and fine mechanics design of reaction flywheel systems for small satellites [J]. Opt. Precision Eng., 2014, 22(2):331-337.
SHANKAR N S, NAIR P S, GHOSAL A. Dynamic interaction of rotating momentum wheels with spacecraft elements [J]. Journal of Sound and Vibration, 2008, 315:970-984.
AGRAWAL S K, PATHAK K, FRANCH J, et al.. A differentially flat open-chain space robot with arbitrarily oriented joint axes and two momentum wheels at the base [J]. IEEE Transactions on Automatic Control, 2009, 54(9):2185-2191.
刘强, 房建成, 韩邦成. 磁悬浮飞轮锁紧保护技术研究与发展现状[J]. 光学 精密工程, 2014, 22(9):2465-2475. LIU Q, FANG J CH, HAN B CH. Research and development status of locking protection technologies for magnetic bearing flywheels [J].Opt. Precision Eng., 2014, 22(9):2465-2475. (in Chinese)
陈茂胜, 金光, 安源,等. 采用自适应PI控制的单框架控制力矩陀螺角动量飞轮系统的设计[J]. 光学 精密工程, 2011, 19(5):1075-1081. CHEN M SH, JIN G, AN Y, et al.. Design of angular momentum wheel in SGCMG using adaptive compensation PI control [J].Opt. Precision Eng., 2011, 19(5):1075-1081. (in Chinese)
纪志成,沈艳霞,薛花. 无刷直流电机自适应模糊控制的研究[J]. 中国电机工程学报,2005,25(5):104-109. JI ZH CH, SHEN Y X, XUE H. Study on the adaptive fuzzy control for brushless DC motor [J].Proceedings of the CSEE, 2005,25(5):104-109.(in Chinese)
夏长亮,祁温雅,杨荣, 等. 基于RBF神经网络的超声电机参数辨识与模型参考自适应控制[J]. 中国电机工程学报,2004,24(7):117-121. XIA CH L, QI W Y, YANG R, et al.. Identification and model reference adaptive control for ultrasonic motor based on RBF neural network [J]. Proceedings of the CSEE, 2004,24(7):117-121.(in Chinese)
GOKBULUT M, DANDIL B, BAL C. A hybrid neuro-fuzzy controller for brushless DC motor [J].Lecture Notes in Computer Science, 2006, 3949:125-132.
GENCER C, SAYGIN A, COSKUN I. DSP based fuzzy-neural speed tracking control of brushless DC motor [J]. Lecture Notes in Computer Science, 2006, 39(49):107-116.
RUBAAI A., RICKETTS D., KANKAM M.D. Development and implementation of an adaptive fuzzy-neural-network controller for brushless drives [J]. IEEE Transactions on Industry Applications, 2002, 38(2):441-447.
李光军,刘刚,张聪. 基于单神经元PID算法的微小飞轮高精度控制[J]. 宇航学报, 2013, 34(1):54-60. LI G J,LIU G, ZHANG C. High accuracy control for micro flywheel based on single neuron PID algorithm [J]. Journal of Astronautics, 2013, 34(1):54-60. (in Chinese)
李鹏. 传统和高阶滑模控制研究及其应用[D]. 长沙:国防科学技术大学, 2011. LI P. Research and Application of Traditional and Higher-Order Sliding Mode Control [D]. Changsha:National University of Defense Technology,2011. (in Chinese)
YEH H, NELSON E, SPARKS A. nonlinear tracking control for satellite formation [J].Journal of Guidance, Control and Dynamics, 2002, 25(2):376-386.
EKER I. Second-order sliding mode control with PI sliding surface and experimental application to an electromechanical plant [J]. Arabian Journal For Science And Engineering, 2012, 37(7):1969-1986.
刘金琨. 滑模变结构控制MATLAB仿真[M]. 北京:清华大学出版社. LIU J K. Sliding Mode Control Design and Matlab Simulation [M]. Beijing:Tsinghua University press. (in Chinese)
陈非凡, 张高飞, 陈益峰. 小卫星动量轮非线性特性建模与仿真方法[J]. 宇航学报, 2003, 24(6):651-655 CHEN F F, ZHAN G F, CHEN Y F. Non-linear modeling and simulation technique for momentum wheel of small satellites [J].Journal of Astronautics, 2003, 24(6):651-655. (in Chinese)
Sliding mode control strategy for PMSM speed ring based on improved exponential convergence law and adaptive Lunberger observer
High-precision adaptive fractional order sliding mode tracking control for piezoelectric platform
System modeling and sliding mode control of dual-axis voice coil actuator fast steering mirror
Attitude planning and control method of low-orbit optical satellite along-track stereoscopic imaging
Predefined-time sliding mode control for rigid spacecraft
Related Author
ZHANG Zhimin
FU Jia
TANG Tengyu
DENG Yongting
LIU Jing
KANG Yuxin
XU Yifan
SUN Mingchao
Related Institution
University of Chinese Academy of Sciences
Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
State Key Laboratory of Dynamic Optical Imaging and Measurement, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
Army Armaments Department
College of Electrical Engineering and Automation, Shandong University of Science and Technology