WANG Hong-yu, FENG Jun, CUI Lei etc. Medical image registration based on salient texture[J]. Editorial Office of Optics and Precision Engineering, 2015,23(9): 2656-2665
WANG Hong-yu, FENG Jun, CUI Lei etc. Medical image registration based on salient texture[J]. Editorial Office of Optics and Precision Engineering, 2015,23(9): 2656-2665 DOI: 10.3788/OPE.20152309.2656.
Medical image registration based on salient texture
Traditional registration methods based on geometric measurement can not match the medical image with local deformation. To solve the problem
an improved Iterative Closest Points (ICP) algorithm about human visual cognitive process is proposed base on the salient texture.Firstly
the method establishes the model for the salient texture feature of a medical image based on Active Appearance Model(AAM )algorithm
and it gives the feature point with more salient for a larger weight to complete the image match in the first step. Then
it introduces the salient texture distance to the traditional space distance. By simulating the human visual cognitive process proposed by Gestalt
the linear decreasing weight is used to balance the two kinds of distance measuring methods. With the algorithm
a whole registration is obtained by the geometric distance in the early stage. On the other hand
the feature points of local deformation are accurately registrated with the texture features in the later stage. At last
a series of experiments are performed on real live images.The experiment results show that the algorithm can get a good matching result
and the registration accuracy is 78.82%
increasing by 22.22% as compared with those of other popular algorithms. The experimental results also show that it is not sensitive to the rotation of the images. It concludes that the algorithm solves the registration problems of local deformation in medical organs and achieves higher precision and stronger robustness.
关键词
Keywords
references
王雷, 高欣, 崔学理,等. 基于灰度距离融合的 2D/3D 刚性配准[J]. 光学 精密工程, 2014, 22(10):2815-2824. WANG L, GAO X, CUI X L, et al.. 2D/3D rigid registration by integrating intensity distance [J]. Opt. Precision Eng., 2014, 22(10):2815-2824.(in Chinese)
OLIVEIRA FPM, TAVARES JMRS. Medical image registration:a review [J]. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17(2):73-93.
SENIN N, COLOSIMO B M, PACELLA M. Point set augmentation through fitting for enhanced ICP registration of point clouds in multisensor coordinate metrology [J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1):39-52.
陈高. 基于特征与灰度的医学图像配准方法[D]. 厦门:厦门大学, 2009. CHEN G. Medical Image Registration Method Based on Characteristic and Gray [D]. Xiamen:Xiamen Uuiversity, 2009.(in Chinese)
DONG J M, PENG Y X, YING S H, et al.. LieTrICP:An improvement of trimmed iterative closest point algorithm [J]. Neurocomputing, 2014, 140:67-76.
孙军华, 谢萍, 刘震,等. 基于分层块状全局搜索的三维点云自动配准[J]. 光学 精密工程, 2013, 21(1):174-180. ZHANG J H, XIE P, LIU ZH, et al.. Automatic 3D point cloud registration based on hierarchical block global search [J]. Opt. Precision Eng., 2013, 21(1):174-180.(in Chinese)
SHARP G C, LEE S W, WEHE D K. ICP registration using invariant features [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1):90-102.
KASE K, MAKINOUCHI A, NAKAGAWA T, et al.. Shape error evaluation method of free-form surfaces [J]. Computer-Aided Design,1999, 31(8):495-505.
SCHVTZ C, JOST T, HVGLI H. Multi-feature matching algorithm for free-form 3D surface registration [C].Fourteenth International Conference on Pattern Recognition, Piscataway, NJ. IEEE, 1998(2):982-984.
JOHNSON A E, BING KANG S. Registration and integration of textured 3D data [J]. Image and Vision Computing, 1999, 17(2):135-147.
孙宁. 认知过程的格式塔感知基础[J]. 考试周刊, 2012 (12):21-22. SUN N. Cognitive processes based on gestalt perception [J]. Examination weekly, 2012(12):21-22.(in Chinese)
DAMAS S, CORDÓN O, SANTAMARÍA J. Medical image registration using evolutionary computation:An experimental survey [J]. IEEE Computational Intelligence Magazine, 2011, 6(4):26-42.
金左轮, 韩静, 张毅,等. 基于纹理显著性的微光图像目标检测[J]. 物理学报, 2014, 63(6):69501. JIN Z L, HAN J, ZHANG Y, et al.. Low light level image target detection based on texture saliency[J]. Acta Physica Sinica, 2014, 63(6):69501.(in Chinese)
赵宏伟, 陈霄, 刘萍萍,等. 视觉显著目标的自适应分割[J]. 光学 精密工程,2013,21(2):531-538. ZHAO H W, CHEN X, LIU P P, et al.. Adaptive segmentation for visual salient object [J]. Opt. Precision Eng., 2013,21(2):531-538.(in Chinese)
肖德贵, 辛晨, 张婷,等. 显著性纹理结构特征及车载环境下的行人检测[J]. 软件学报,2014,25(3):675-689. XIAO D G, XIN CH, ZHANG T, et al.. Saliency texture structure descriptor and its application in pedestrian detection [J].Journal of Software,2014,25(3):675-689.(in Chinese)
CHENG X, SRIDHARAN S, SARAGIH J, et al. Rank minimization across appearance and shape for AAM ensemble fitting [C].IEEE International Conference on Computer Vision (ICCV), Piscataway, 2013:577-584.
刘丽霞. 图像纹理特征研究和比较.[D] 北京:北京邮电大学, 2011. LIU L X. Study and comparison on image texture featur [D]. Beijing:Beijing University of Posts and Telecommunications,2011.(in Chinese)
RIAZ F, HASSAN A, REHMAN S, et al.. Texture classification using rotation-and scale-invariant Gabor texture features [J]. IEEE Signal Processing Letters, 2013, 20(6):607-610.
HAGHIGHAT M, ZONOUZ S, ABDEL-MOTTALEB M. Identification using encrypted biometrics [C].Computer Analysis of Images and Patterns, Springer Berlin Heidelberg, 2013:440-448.
晓娟, 李忠科, 王先泽,等. 基于特征点和改进ICP的三维点云数据配准算法[J]. 传感器与微系统,2012(9):116-118,122. XIAO J,LI ZH K, WANG X Z, et al.. Research of 3D point cloud data registration algorithms based on feature points and improved ICP [J]. Transducer and Microsystem Technologies,2012(9):116-118,122.(in Chinese)
张红颖. 医学图像配准算法研究[D]. 天津:天津大学,2007. ZHANG H Y. Research on medical image registration algorithm [D]. Tianjin:Tianjin University, 2007.(in Chinese)
COOPER G R J. The antialiased textural analysis of aeromagnetic data [J]. Computers & Geosciences, 2009, 35(3):586-591.