YI Xiao-long, YANG Zhen-ling, YE Xin etc. Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2733-2739
YI Xiao-long, YANG Zhen-ling, YE Xin etc. Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2733-2739 DOI: 10.3788/OPE.20152310.2733.
Absorptance measurement for sloping bottom cavity of cryogenic radiometer
The Total Solar Irradiance (TSI) cavity in an Absolute Radiance Calibration Primary Radiometer(ARCPR) for space remote sensing should have an absorptance more than 0.999 9 and the measurement uncertainty superior to 0.001%. Therefore
a cylindrical sloping bottom cavity was used as a receiver cavity for calibration of the TSI because of its superior performance in the space and cryogenic environments. Then
the absorptance of the cylindrical sloping bottom cavity was measured. The characteristics of the cylindrical sloping bottom cavity were introduced
and why the cavity was used as the receiver cavity in cryogenic radiometer was analyzed. Furthermore
the principle of the absorptance measured by a substitution method was expounded. A reference light path was added to monitor the stability of a laser to improve the measurement repeatability and accuracy. Finally
the absorptance of sloping bottom cavity was measured using this method
and the uncertainty of measurement results was analyzed. Experimental results indicate that the absorptance of sloping bottom cavity is 0.999 9280.000 005
superior to that of the calibration standard of the blackbody cavity
which verifies it is feasibility to use the sloping bottom cavity as the TSI cavity for measuring the TSI. The experiments also verify that the ratio of single voltage and reference voltage could be used to calculate the cavity absorptance
and could improve the uncertainty of measurement result. This method is fit for measuring the absorptance of an ultra high absorptance cavity.
关键词
Keywords
references
方伟,金锡峰. 一种双锥腔补偿型绝对辐射计的研制[J]. 太阳能学报,1992,13(4):406-411. FANG W, JIN X F. Development of a compensate cavity absolute radiometer[J].Acta Energiae Solaris Sinica, 1992, 13(4):406-411.(in Chinese)
[2] WANG H R, WANG Y P. Spaceborne radiometers for measuring total solar irradiance[J].Chinese Optics, 2012, 5(6):555-565.
[3] 方伟,禹秉熙,姚海顺,等. 太阳辐照绝对辐射计与国际比对[J]. 光学学报,2003,23(1): 112-116. FANG W, YU B X, YAO H SH, et al.. Solar irradiance absolute radiometer and international comparison[J]. Acta Optica Sinica, 2003, 23(1):112-116.(in Chinese)
[4] PROKHOROV A V, HANSSENANSSEN L M. Effective emissivity of a cylindrical cavity with an inclined bottom: I.Isothermal cavity[J]. Metrologia, 2004,41:421-431.
[5] GENTILE T R, HOUSTON J M, HARDIS J E,et al.. National institute of standards and technology high-accuracy cryogenic radiometer[J]. Applied Optics, 1996, 3(7):1056-1068.
[6] FANG Q Q, FANG W, WANG Y P, et al.. New shape of blackbody cavity: conical generatrix with an inclined bottom[J]. Optical Engineering, 2012,51(8):086401-1-086401-5.
[7] PEARSON D A, ZHANG Z M. Thermal-electrical modeling of absolute cryogenic radiometers[J]. Cryogenics, 1999,39:299-309.
[8] HOUSTON J M, RICE J P. NIST reference cryogenic radiometer designed for versatile performance[J]. Metrologia, 2006, 43:31-35.
[9] DOKTORWURDE. Metrology of Solar Irradiance[D]. Zur,Universitat Zurich,2011.
[10] 白山.基于低温辐射计的探测器光谱响应度相关测量技术研究[D]. 北京:中国计量科学研究院光学与激光计量科学研究所,2012. BAI SH. Research on the Measurement Techniques of Detector Spectral Response Based on Cryogenic Radiometer[D].Beijing: National Institute of Metrology, P. R. China, 2012.(in Chinese)
[11] 黄强先,余夫领,宫二敏,等. 零阿贝误差的纳米三坐标测量机工作台及误差分析[J]. 光学 精密工程,2013,21(3):664-671. HUANG Q X, YU F L, GONG E M, et al.. Nano-CMM stage with zero abbe Error error and its error analysis[J]. Opt. Precision Eng., 2013,21(3):664-671.(in Chinese)
[12] 石照耀,张宇,张白. 三坐标机测量齿轮齿廓的不确定度评价[J]. 光学 精密工程,2012,20(4):766-770. SHI ZH Y, ZHANG Y, ZHANG B. Uncertainty evaluation of CMM measurement for gear profile[J]. Opt. Precision Eng., 2012,20(4):766-770.(in Chinese)
[13] 冉旭,吴丹,陈炳德,等. 最佳估算加不确定性分析方法及其应用研究[J]. 核动力工程,2013,34(3):120-123. RAN X, WU D, CHEN B D, et al.. Best estimate plus uncertainty method and its application[J]. Nuclear Power Engineering, 2013,34(3):120-123.(in Chinese)
[14] 夏桂锁,廖城,伏燕军. 平行双关节坐标测量机的标定及不确定度评价[J]. 光学 精密工程,2014,22(5):1227-1234. XIA G S, LIAO CH, FU Y J. Calibration and uncertainty evaluation of double parallel-joint coordinate measuring machine[J].Opt. Precision Eng., 2014,22(5):1227-1234.(in Chinese)
[15] 田志辉,史振广,刘伟奇,等. 曲率半径的高精度测量及其不确定度[J]. 光学 精密工程,2013,21(10):2495-2501. TIAN ZH H, SHI ZH G, LIU W Q, et al.. High-accuracy measurement for radius of curvature and its uncertainties[J]. Opt. Precision Eng., 2013,21(10):2495-2501.(in Chinese)