FENG Jin-yang, WU Shu-qing, LI Chun-jian etc. Free-fall absolute gravity measurement based on double interferometers[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2740-2746
FENG Jin-yang, WU Shu-qing, LI Chun-jian etc. Free-fall absolute gravity measurement based on double interferometers[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10): 2740-2746 DOI: 10.3788/OPE.20152310.2740.
Free-fall absolute gravity measurement based on double interferometers
To avoid the effect of falling body rotation on measurement accuracy for free-fall absolute gravity measurement based on optical interferometry
a novel method by using two interferometers was proposed. Firstly
the effect mechanism of falling body rotation on absolute gravity measurements was introduced and a data fusion method using data derived from an absolute gravimeter with two simultaneously measured interferometers was presented. Then simulation experiments were carried out according to a preset gravity value
the initial perpendicular height difference between the optical center (OC) and the center of mass (COM) in the upper and lower interferometer reflecting prisms in falling body
the randomly generated sequences of rotation angular velocity of falling body and the gravity measurement deviation caused by vibration for the upper and lower interferometer
respectively. The experimental results show that gravity deviation and the standard deviation obtained by data fusion processing from double interferometers with the vertical distance between OC and COM of 2.5 mm are about 0.5 μGal and 0.3 μGal
respectively
which are consistent with that of the existing method by strictly adjustment of the COM of fall body. By properly choosing the distance of OC to COM for the upper and lower prisms
the effect of rotation can be better reduced. When the distance of the OC to the COM is designed to be ±3 mm
the gravity value deviation calculated from double interferometer data fusion is less than 1μGal
which meets the requirements of some measurement fields for precise gravity measurement.
关键词
Keywords
references
FALLER J E. Thirty years of progress in absolute gravimetry: a scientific capability implemented by technological advances[J]. Metrologia, 2002, 39(5): 425.
郭有光, 李德禧, 黄大伦, 等. 高精度绝对重力仪观测研究[J]. 地球物理学报, 1990, 33(4): 447-453. GUO Y G, LI D X, HUANG D L, et al.. Observation study of a high accuracy and absolute gravimeter [J]. Acta Geophysica Sinica, 1990, 33(4):447-453. (in Chinese)
张为民, 王勇, 周旭华. 我国绝对重力观测技术应用研究与展望[J]. 地球物理学进展, 2008, 23(1): 69-72. ZHANG W M, WANG Y, ZHOU X H. Expectation and application study of absolute gravity observation technology in China [J]. Progress in Geophysics, 2008,23(1): 69-72. (in Chinese)
刘冬至, 李辉, 邢乐林, 等. 中国地震重力网绝对重力观测结果分析[J]. 大地测量与地球动力学, 2007, 27(5): 88-93. LIU D ZH, LI H, XING L L, et al.. Analysis of absolute gravimetry result of China earthquake gravity network [J]. Journal of Geodesy and Geodynamics, 2007, 27(5):88-93. (in Chinese)
刘达伦, 吴书清, 徐进义, 等. 绝对重力仪研究的最新进展[J]. 地球物理学进展, 2005, 19(4): 739-742. LIU D L, WU SH Q, XU J Y, et al..The new evolution of absolute gravimeter [J]. Progress in Geophysics, 2005, 19(4): 739-742. (in Chinese)
PETER G, MOOSE R E, WESSELLS C W, et al.. High-precision absolute gravity observations in the United States [J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B5): 5659-5674.
RINKER III R L. Super Spring: a New Type of Low-Frequency Vibration Isolator [D]. University of Colorado at Boulder, 1983.
NIEBAUER T M, SASAGAWA G S, FALLER J E, et al.. A new generation of absolute gravimeters [J]. Metrologia, 1995, 32(3): 159.
PETERS A, CHUNG K Y, CHU S. Measurement of gravitational acceleration by dropping atoms [J]. Nature, 1999, 400(6747): 849-852.
吴书清. 基于自由落体原理的绝对重力仪关键技术的研究及应用[D]. 北京:中国计量科学研究院, 2012. WU SH Q. The Research and Application of Absolute Gravimeter Based on Free-fall Theory[D]. Beijing:National Institute of Metrology, 2012. (in Chinese)
胡华, 伍康, 申磊, 等. 新型高精度绝对重力仪[J]. 物理学报, 2012, 61(9):99101-099101. HU H, WU K, SHEN L, et al.. A new high precision absolute gravimeter [J]. Acta Physica Sinica, 2012, 61(9):99101-099101. (in Chinese)
滕云田, 吴琼, 郭有光, 等. 基于激光干涉的新型高精度绝对重力仪[J]. 地球物理学进展, 2013 (4):2141-2147. TENG Y T, WU Q, GUO Y G, et al.. New type of high-precision absolute gravimeter base on laser interference [J]. Progress in Geophysics, 2013 (4):2141-2147. (in Chinese)
周敏康. 原子干涉重力测量原理性实验研究[D]. 武汉:华中科技大学, 2011. ZHOU M K. Experimental Demonstration of an Atom Interferometry Gravimeter [D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese)
王肖隆. 基于原子干涉的高分辨率引力测量[D]. 杭州:浙江大学, 2011. WANG X L. High Resolution Gravity Sensors Based on Atom Interferometry [D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
郭有光, 黄大伦, 方永源. NIM-2 型可移激光绝对重力仪[J]. 地球物理学报, 1988, 31(1):73-81. GUO Y G, HUANG D L, FANG Y Y. A transportable laser interferometry absolute gravimeter type NIM-2 movable [J]. Acta Geophysica Sinica, 1988, 31(1):73-81. (in Chinese)
郭允晟, 方永源. 符合原理在激光绝对重力仪中的应用[J]. 计量学报, 1982, 3(4):259-266. GUO Y SH, FANG Y Y. Coincidence method and application in laser interferometry absolute gravimeter [J]. Acta Metrologica Sinica, 1982, 3(4):259-266. (in Chinese)
VITOUCHKINE A L, FALLAR J E. A direct and sensitive method for positioning the centre of mass of a dropping object at the optical centre of the enclosed corner cube in ballistic absolute gravimeters [J]. Metrologia, 2004, 41(4):19.
ROTHLEITNER C, SVITLOV S, MERIMECHE H, et al.. A method for adjusting the centre of mass of a freely falling body in absolute gravimetry[J]. Metrologia, 2007, 44(3):234.