XU Chao, GAO Min, YANG Suo-chang etc. Visual attention mechanism-aided fast target detection by particle window[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3227-3237
XU Chao, GAO Min, YANG Suo-chang etc. Visual attention mechanism-aided fast target detection by particle window[J]. Editorial Office of Optics and Precision Engineering, 2015,23(11): 3227-3237 DOI: 10.3788/OPE.20152311.3227.
Visual attention mechanism-aided fast target detection by particle window
As traditional sliding window detectors need to search the whole image by exhaustive method
a visual attention mechanism-aided target detection model by the particle window is proposed to reduce the calculational load while containing high detection accuracy. This model takes the target saliency as prior information of searching process
and then extracts the region of interest containing true target position by the "Image Signature" saliency map generator and entropy threshold. By uniformly drawing particle windows in an image range corresponding to the saliency targets with Monte Carlo sampling
the local region is treated as candidate detection points
thus resampling is carried out according to corresponding particle windows' response. This strategy only focuses on the areas where the objects are potentially present and avoiding the tradeoff between accuracy and efficiency resulting from searching steps. A multi-stage classifier with Adaboost+HLF and SVM+ HOG is established
the former is applied to once-over and the latter is used to locate precisely. The target detection model proposed is compared with the traditional sliding window method and particle window method
and the results show that the Receiver Operating Characteristic(ROC) curve by proposed method contains the area to be larger than that of the other methods and the time consuming is only 1/3 to 1/4 that of the sliding window method and 1/2 that of the particle window method. It increases significantly detection speeds at maintaining high precision detection speed and achieves fast and accurate target detection.
关键词
Keywords
references
ZHANG Y X, DU B, ZHANG L P. A sparse representation-based binary hypothesis model for target detection in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1346-1354.
VAZQUEZ D, LOPEZ A M, MARIN J, et al.. Virtual and real world adaption for pedestrian detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4):797-809.
黄炎, 范赐恩, 朱秋平, 等. 联合梯度直方图和局部二值模式特征的人体检测[J]. 光学 精密工程, 2013, 21(4):1047-1053. HUANG Y, FAN C E, ZHU Q P, et al.. HOG-LBP pedestrian detection[J].Opt. Precision Eng., 2013, 21(4):1047-1053.(in Chinese)
PEDERSOLI M, GONZALEZ J, HU X, et al.. Toward real-time pedestrian detection based on a deformable template model[J]. IEEE Transactions on Intelligence Transportation Systems, 2014, 15(1):355-364.
LAMPERT C H, BLASCHKO M B, HOFMANN T. Efficient subwindow search:a branch and bound framework for object localization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12):2129-2142.
YANG B, LEI Y Q. Vehicle detection and classification for low-speed congested traffic with anisotropic magnetoresistive sensor[J].IEEE Sensors Journal, 2015, 15(2):1132-1138.
PEDERSOLI M, GONZALEZ J, BAGDANOV A D, et al.. Recursive coarse-to-fine localization for fast object detection[C]. Proceedings of 11th European Conference on Computer Vision, 2010:280-293.
GUALDI G, PRATI A, CUCCHIARA R. Multistage particle windows for fast and accurate object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(6):1589-1604.
杨扬, 李善平. 分割位置提示的可变形部件模型快速目标检测[J]. 自动化学报, 2012, 38(4):540-548. YANG Y, LI SH P. Fast object detection with deformable part models and segment locations' hint[J]. Acta Automatic Sinca, 2012, 38(4):540-548.(in Chinese)
MUNDER S, GAVRILA D. An experimental study on pedestrian classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11):1863-1868.
ENZWEILER M, GAVRILA D. Monocular pedestrian detection:survey and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12):2179-2195.
孙锐, 陈军, 高隽. 基于显著性检测与HOG-NMF特征的快速行人检测方法[J]. 电子与信息学报, 2013, 35(8):1921-1926. SUN R, CHEN J, GAO J. Fast pedestrian detection based on saliency detection and HOG-NMF features[J].Journal of Electronics & Information Technology, 2013, 35(8):1921-1926.(in Chinese)
SUN W, ZHAO C, SUN M. Learning based particle filtering object tracking for visible-light systems[J]. International Journal for Light and Electron Optics, 2015, 126(19):1830-1837.
杨利平, 辜小花. 用于人脸识别的相对梯度直方图特征描述[J]. 光学 精密工程, 2014, 22(1):152-159. YANG L P, GU X H. Relative gradient histogram features for face recognition[J].Opt. Precision Eng., 2014, 22(1):152-159.(in Chinese)
钱生, 陈宗海, 林名强, 等. 基于条件随机场和图像分割的显著性检测[J]. 自动化学报, 2015, 41(4):711-724. QIAN SH, CHEN Z H, LIN M Q, et al.. Saliency detection based on conditional random field and image segmentation[J]. ACTA AUTOMATIC SINCA, 2015, 41(4):711-724.(in Chinese)
修春波, 魏世安. 显著性直方图模型的Camshift跟踪方法[J]. 光学 精密工程, 2015, 23(6):1749-1757. XIU CH B, WEI SH A. Camshift tracking with saliency histogram[J]. Opt. Precision Eng., 2015, 23(6):1749-1757.(in Chinese)
黎万义, 王鹏, 乔红. 引入视觉注意机制的目标跟踪方法综述[J]. 自动化学报, 2014, 40(4):561-576. LI W Y, WANG P, QIAO H. A survey of visual attention based methods for object tracking[J].ACTA AUTOMATIC SINCA, 2014, 40(4):561-576.
GUO C, ZHANG L. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2010, 19(1):185-198.
ACHANTA R, HEMAMI S, ESTRADA F, et al.. Frequency-tuned salient region detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Miami:FL, 2009:1597-1604.
HOU X D, HAREL J, KOCH C, et al.. Image signature:highlighting sparse salient regions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(1):194-201.