DAI Shi-jie, QI Jin-yao, Yi Dan etc. Mean Shift tracking algorithm using joint histogram of colors and oriented gradients[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 459-465
DAI Shi-jie, QI Jin-yao, Yi Dan etc. Mean Shift tracking algorithm using joint histogram of colors and oriented gradients[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 459-465 DOI: 10.3788/OPE.20152313.0459.
Mean Shift tracking algorithm using joint histogram of colors and oriented gradients
The single orientation feature gets ineffective when tracking rotational object. For the sake of fulfilling object tracking in the scenes of illumination variation
rotation and partial occlusion
a joint histogram of colors and oriented gradients based Mean Shift tracking algorithm is presented. The joint histogram fuses the features of colors and oriented gradients by expanding the dimensions of the histogram. In this algorithm
IVF(illumination variation factor) is calculated by the model of illumination
which detects the degree of illumination variation. In the process of tracking
if IVF is below a certain threshold
color feature is taken as the principal feature so that the algorithm is robust to rotation
otherwise choose oriented gradients as principal feature for its robustness to illumination variation. The problem of partial occlusion can be figured out by dividing the object template into sub areas
and the position of object can be determined by the area that obtains largest similarity coefficient. The presented algorithm shows good performance in the experiments when dealing with complex scenes such as target rotation
illumination change and partial occlusion.
关键词
Keywords
references
LI S X, CHANG H X, ZHU C F. Adaptive pyramid mean shift for global real-time visual tracking[J]. Image and Vision Computing, 2010, 28(3):424-437.
WANG F, YU S, YANG J. Robust and efficient fragments-based tracking using mean shift[J]. AEU-international Journal of Electronics and Communications, 2010, 64(7):614-623.
COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2003, 25(5):564-577.
LEICHTER I, LINDENBAUM M, RIVLIN E. Mean shift tracking with multiple reference color histograms[J]. Computer Vision and Image Understanding, 2010, 114(3):400-408.
MAZINAN A H, AMIR-LATIFI A. Applying mean shift, motion information and Kalman filtering approaches to object tracking[J]. ISA transactions, 2012, 51(3):485-497.
WANG Y, CHEN F X, GUO H X. Kernel-based target tracking with spatial histogram and template drift correction[J]. Acta Automatica Sinica, 2012, 38(3):430-435.
孙中森, 孙俊喜, 宋建中, 等. 一种抗遮挡的运动目标跟踪算法[J]. 光学 精密工程, 2007,15(2):267-271. SUN Z S, SUN J X, SONG J Z, et al.. Ant-occlusion arithmetic for moving object tracking[J]. Opt. Precision Eng., 2007, 15(2):267-271.(in Chinese)
YILMAZ A. Kernel-based object tracking using asymmetric kernels with adaptive scale and orientation selection[J]. Machine Vision and Applications, 2011, 22(2):255-268.
刘晴, 唐林波, 赵保军, 等. 改进的Mean shift目标跟踪算法[J]. 系统工程与电子技术, 2013, 35(6):1318-1323. LIU Q, TANG L B, ZHAO B J, et al.. Improved mean shift target tracking algorithm[J]. Systems Engineering and Electronics, 2013, 35(6):1318-1323.(in Chinese)
李远征, 卢朝阳, 高全学,等. 基于多特征融合的均值迁移粒子滤波跟踪算法[J]. 电子与信息学报, 2010, 32(2):411-415. LI Y ZH, LU ZH Y, GAO Q X, et al.. Particle filter and mean shift tracking method based on multi-feature fusion[J]. Journal of Electronics & Information Technology, 2010, 32(2):411-415.(in Chinese)
贾慧星, 张毓晋. 基于梯度方向直方图特征的多核跟踪. 自动化学报, 2009, 35(10):1283-1289. JIA H X, ZHANG Y J. Multiple kernels based object tracking using histograms of oriented gradients[J]. Acta Automatica Sinica, 2009, 35(10):1283-1289.(in Chinese)