The traditional Principal Component Analysis(PCA) and IHS satellite image fusion technology may have spectral losing and feature detail distortion. A fusion method using Robust PCA(RPCA) combined with IHS transform was proposed to solve the problem. First
multi-spectral images were converted from a RGB model into an IHS model. The 'I' component of IHS was converted into low-rank matrix L0 and sparse matrix S0 by RPCA transform. Then
the histogram of panchromatic images was matched with the histogram of the L0 component
and the L0 component was replaced by the panchromatic image. Finally
the fused multi-spectral image was converted back to the RGB space. Testing results show that of the information entropies preserved by RPCA combined IHS method are 7.5275 and 7.4772
which means that the method proposed in the paper gives better results than conventional methods
such as PCA and IHS transform.
关键词
Keywords
references
伊力哈木·亚尔买买提,谢丽蓉, 孔军. 基于PCA 变换与小波变换的遥感图像融合方法[J]. 红外与激光工程,2014(7):2335-2340. YILIHAMU Y E M M T, XIE L R, KONG J. Remote sensing image fusion based on PCA transform and wavelet transform[J]. Infrared and Laser Engineering,2014(7):2335-2340.(in Chinese)
李新,秦世引. 一种具有高保真度光谱的遥感图像快速融合法[J]. 宇航学报,2010,31(8):2023-2028. LI X, QIN SH Y. An approach to fast fusion of remote sensing images with high fidelity of spectrum information[J].Journal of Astronautics,2010,31(8):2023-2028.(in Chinese)
张蕾,金龙旭,韩双丽,等. 采用非采样Contourlet变换与区域分类的红外和可见光图像融合[J]. 光学 精密工程, 2015,23(3):810-818. ZHANG L, JIN L X, HAN SH L, et al.. Fusion of infrared and visual images based on non-sampled contourlet transform and region classification[J]. Opt. Precision Eng.,2015,23(3):810-818.(in Chinese)
戴光智,陈铁群,薛家祥,等. 小波图像融合改善超声图像分辨率[J]. 光学 精密工程, 2008,16(11):2290-2295. DAI G ZH, CHEN T Q, XUE J X, et al.. Improvement of resolution for ultrasonic image based on wavelet image fusion[J]. Opt. Precision Eng.,2008,16(11):2290-2295.(in Chinese)
毛士艺,赵巍. 多传感器图像融合技术综述[J]. 北京航空航天大学学报,2002,28(5):512-518. MAO SH Y, ZHAO W. Comments on multisensor image fusion techniques[J]. Journal of Beijing University of Aeronautics and Astronautics,2002,28(5):512-518.(in Chinese)
周前祥,敬忠良,姜世忠.多源遥感影像信息融合研究现状与展望[J]. 宇航学报,2002,23(5):89-94. ZHOU Q X, JING ZH L, JING SH ZH. Comments on research and development of multi-sourse information fusion for remote sensing images[J].Journal of Astronautics,2002,23(5):89-94.(in Chinese)
杜洪,夏欣,据生根,等. 基于PCA图像压缩算法研究与实现[J]. 四川大学学报(自然科学版),2014,51(5):910-914. DU H, XIA X, JU SH G, et al.. Image compression based on PCA[J].Journal of Sichuan University(Natural Science Edition),2014,51(5):910-914.(in Chinese)
CANDES E J, LI X, MA Y, et al.. Robust principal component analysis[J].Journal of the ACM,2011,58:1-37.
DE LA TORRE F, BLACK M.J. Robust principal component analysis for computer vision[C]. International Conference on IEEE,2001,1:362-369.
WRIGHT J,MA Y, MAIRAL J, et al..Sparse representation for computer vision and pattern recognition[J].Proceedings of the IEEE,2010,98(6):1031-1044.
张永新. 多聚焦图像像素级融合算法研究[D].西安:西北大学,2014:1-39. ZHANG Y X. Research on pixel level fusion algorithms for multifocus image[D].Xi'an:Northwest University, 2014:1-39.(in Chinese)
余先川,吕中华,胡丹. 遥感图像配准技术综述[J]. 光学 精密工程, 2013,21(11):2960-2972. YU X CH, LÜ ZH H, HU D. Review of remote sensing image registration techniques[J].Opt. Precision Eng.,2013,21(11):2960-2972.(in Chinese)