ZHANG De-fu, GE Chuan, LI Xian-ling etc. Linearity calibration platform of capacitive sensors[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 143-151
ZHANG De-fu, GE Chuan, LI Xian-ling etc. Linearity calibration platform of capacitive sensors[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 143-151 DOI: 10.3788/OPE.20162401.0143.
Linearity calibration platform of capacitive sensors
An on-line linearity calibration platform for capacitive displacement sensors is proposed to implement the high-precision adjustment and the measurement of displacement. The symmetry axis for movement
the measuring axis of an interferometer and the measuring axis of a sensor are collinear in the platform
so that the Abbe error is decreased in principle. For the
z
/tip/tilt adjustment function in the platform
the alignment between the sensor and the target surface is realized. The composition and principle of the calibration method are introduced and the micro-displacement is adjusted by a symmetrical parallelogram mechanism. Then
the output compliance and stroke of the guiding mechanism are analyzed based on Compliance Matrix Method(CMM). The experiment result demonstrates that the stroke of the calibration platform is 735.162 m and the errors are 7.410% and 4.633% comparing with that of the Finite Element Method(FEM) and CMM
respectively
which meet the requirement of the stroke. Moreover
the sensor linearity is improved from 0.014 21% to 0.006 231% after calibration calculation. The linearity calibration method has high-precision and it satisfies the requirement of fine displacement adjustment of the mechanism.
关键词
Keywords
references
赵磊, 巩岩, 赵阳. 光刻投影物镜中的透镜X-Y柔性微动调整机构[J]. 光学精密工程, 2013, 21(6): 1425-1433. ZHAO L, GONG Y, ZHAO Y. Flexure-based X-Y micro-motion mechanism used in lithographic lens [J]. Opt. Precision Eng., 2013, 21(6): 1425-1433. (in Chinese)
姚建涛, 李立建, 许允斗, 等. 超静定六维力传感器静定测量模型及标定方法[J]. 仪器仪表学报, 2013, 34(9): 1927-1933. YAO J T, LI L J, XU Y D,et al.. Statically determinate measurement model and calibration method of statically indeterminate six-axis force sensor [J]. Chinese Journal of Science Instrument, 2013, 34(9): 1927-1933. (in Chinese)
尤晶晶, 李成刚, 吴洪涛. 并联式六维加速度传感器的参数辨识[J]. 光学精密工程, 2013, 21(10): 2627-2638. YOU J J, LI CH G,WU H T. Parameter identification of parallel type six-axis accelerometer [J]. Opt. Precision Eng., 2013, 21(10): 2627-2638. (in Chinese)
刘俊, 秦岚, 李敏, 等. 平板式压电六维力/力矩传感器的研制[J]. 光学精密工程, 2011, 19(7): 1569-1579. LIU J, QIN L, LI M, et al.. Development of parallel piezoelectric six-axis force/torque sensor [J]. Opt. Precision Eng., 2011, 19(7): 1569-1579. (in Chinese)
赵磊,刘巍,巩岩. 预紧式Stewart结构六维力/力矩传感器[J]. 光学精密工程, 2011, 19(12): 2954-2962. ZHAO L, LIU W, GONG Y. Pre-stressed six-axis force/torque sensor based on Stewart platform [J].Opt. Precision Eng., 2011, 19(12): 2954-2962. (in Chinese)
HAITJEMA H, SCHELLEKENS P H J, WETZELS. Calibration of displacement sensors up to 300μm with nanometer accuracy and direct traceability to a primary standard of length [J]. Metrologia, 2000, 37: 25-33.
FLEMING A J. A review of nanometer resolution position sensors: Operation and performance [J]. Sensor and Actuators A, 2013, 190: 106-126.
BEER F P, JOHNSTON E R, DEWOLF J T,et al.. Mechanics of materials [M]. New York: McGraw-Hill, 2012.
YOUNG W C, BUDYNAS R G.Roark's formulas for stress and strain [M]. New York: McGraw-Hill, 2002.
LOBONTIU N. Compliant mechanisms: design of flexure hinges [M]. Florida: CRC Press, 2003.
LI Y M, XU Q S. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator [J]. IEEE Transactions on Robotics, 2009, 25(3): 645-657.
LI Y M, HUANG J M, TANG H. A compliant parallel XY micromotion stage with complete kinematic decoupling [J]. IEEE Transactions on Automation Science and Engineering, 2012, 9(3): 538-553.