ZHANG Lei, WANG Yan-jie, SUN Hong-hai etc. Adaptive scale object tracking with kernelized correlation filters[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 448-459
ZHANG Lei, WANG Yan-jie, SUN Hong-hai etc. Adaptive scale object tracking with kernelized correlation filters[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 448-459 DOI: 10.3788/OPE.20162402.0448.
Adaptive scale object tracking with kernelized correlation filters
As most of tracking-by-detection methods have not dealt with the scale estimation problem in target tracking
this paper proposes a scale estimation strategy based on the tracking-by-detection framework. Meanwhile
it designs an adaptive scale tracking algorithm based on kernelized correlation filters. The algorithm uses a kernel function to solve the regularized least square classifier to obtain the kernelized correlation filters. Then it completes the target position and scale detection by online learning the kernelized correlation filters
and updates the filters in online. To verify the feasibility of the proposed algortihm
ten groups of benchmark video sequences are tested and obtained results are compared with those of five kinds of tracking algorithms. The experimental results show that the proposed approach improves the performance by 6.9% in the average distance precision as compared to the best one of the other five excellent existing tracking algorithms. It is robust to scale changing
illumination variation
partial occlusion
pose variation
rotation
fast motion and other complex scenes.
关键词
Keywords
references
YILMAZ A, JAVED O, SHAH M. Object tracking:a survey[J]. ACM Computing Surveys, 2006, 38(4):1-45.
李静宇,王延杰. 基于子空间的目标跟踪算法研究[J]. 液晶与显示, 2014, 29(4):617-622. LI J Y, WANG Y J. Subspace based target tracking algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(4):617-622.(in Chinese)
陈东成,朱明,高文,等. 在线加权多示例学习实时目标跟踪[J]. 光学精密工程,2014,22(6):1661-1667. CHEN D CH, ZHU M, GAO W, et al.. Real-time object tracking via online weighted multiple instance learning[J]. Opt. Precision Eng., 2014, 22(6):1661-1667.(in Chinese)
宋策,张葆,尹传历. 适于机载环境对地目标跟踪的粒子滤波设计[J]. 光学精密工程,2014,22(4):1037-1047. SONG C, ZHANG B, YIN CH L. Particle filter design for tracking ground targets in airborne environment[J]. Opt. Precision Eng., 2014, 22(4):1037-1047.(in Chinese)
张雷,王延杰,何舒文. 基于相位一致性的实时压缩跟踪方法[J]. 光子学报,2014,43(8):0810003. ZHANG L, WANG Y J, HE SH W.Real-time compressive tracking method based on phase congruency[J]. Acta Photonica Sinica, 2014, 43(8):0810003.(in Chinese)
JEPSON A, FLEET D, EL-MARAGHI T. Robust online appearance models for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10):1296-1311.
ADAM A, RIVLIN E and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2006:798-805.
ROSS D, LIM J, LIN R, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3):125-141.
BOLME D S, BEVERIDGE J R, DRAPER B A, et al.. Visual object tracking using adaptive correlation filters[C]. 23rd IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2010,13-18.
KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 43(7):1409-1422.
HENRIQUES J F, CASEIRO R, MARTINS P, et al.. Exploiting the circulant structure of tracking-by-detection with kernels[C].European Conference on Computer Vision, 2012:702-715.
DANELLJAN M, KHAN F S, FELSBERG M. Adaptive color attributes for real-time visual tracking[C]. 27th IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2014:23-28.
ZHANG K H, ZHANG L,YANG M H.Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36(10):2002-2015.
郭敬明,何昕,魏仲慧. 基于在线支持向量机的Mean Shift彩色图像跟踪[J]. 液晶与显示, 2014, 29(1):120-128. GUO J M, HE X,WEI ZH H. New Mean Shift tracking for color image based on online support vector machine[J].Chinese Journal of Liquid Crystals and Displays, 2014, 29(1):120-128.(in Chinese)
HENRIQUES J F, CASEIRO R, MARTINS P, et al.. High speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
孙晓燕,常发亮. 梯度特征稀疏表示目标跟踪[J]. 光学精密工程,2013,21(12):3191-3197. SUN X Y,CHANG F L. Object tracking based on sparse respresentation of gradient feature[J]. Opt. Precision Eng., 2013, 21(12):3191-3197.(in Chinese)
朱秋平,颜佳,张虎,等. 基于压缩感知的多特征实时跟踪[J]. 光学精密工程,2013,21(2):437-444. ZHU Q P, YAN J, ZHANG H, et al.. Real-time tracking using multiple features based on compressive sensing[J]. Opt. Precision Eng., 2013, 21(2):437-444.(in Chinese)
WU Y, LIM J, YANG M-H. Online object tracking:a benchmark[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2013:2411-2418.
GRAY R M.Toeplitz and Circulant Matrices:A Review[M]. Boston:Now Publishers Inc, 2006.
RIFKIN R, YEO G, POGGIO T. Regularized least-squares classification[J]. Nato Science Series Sub Series Ⅲ:Computer and Systems Sciences, 2003, 190:131-154.
SCHÕLKOPF B, SMOLA A J. Learning with Kernels:Support Vector Machines, Regularization, Optimization, and Beyond[M]. London:The MIT Press, 2002.
DANELL J M, HAGERG, KHAN F S,et al.. Accurate scale estimation for robust visual tracking[J]. British Machine Vision Conference, 2014.
ZHANG K H, SONG H H. Real-time visual tracking via online weighted multiple instance learning[J]. Pattern Recognition, 2013, 46(1):397-411.
ZHANG K H, ZHANG L, YANG M H. Real-Time compressive tracking[J]. European Conference on Computer Vision, 2012, 7574:864-877.
EVERINGHAM M, GOOL L, WILLIAMS C, et al.. The Pascal Visual Object Classes(VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
BABENKO B, YANG M-H, BELONGIE S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632.