XIAO Ze-feng, YANG Yong-qiang, SONG Chang-hui etc. Process and properties of selective laser sintering ultrahigh molecular weight polyethylene[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 502-510
XIAO Ze-feng, YANG Yong-qiang, SONG Chang-hui etc. Process and properties of selective laser sintering ultrahigh molecular weight polyethylene[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 502-510 DOI: 10.3788/OPE.20162403.0502.
Process and properties of selective laser sintering ultrahigh molecular weight polyethylene
The effects of different processing parameters in Selective Laser Sintering(SLS) and subsequent heat treatment on the mechanical properties of Ultrahigh Molecular Weight Polyethylene(UHMWPE) specimens were investigated. By adjusting the different processing parameters
such as scanning space
scanning speed and laser power
the density
tensile strength and breaking elongation of UHMWPE specimens fabricated by SLS were described
then the mechanical properties of the UHMWPE specimens with and without heat treatments were compared. The experimental result demonstrates that the relative density
tensile strength and the breaking elongation have a positive correlation with the laser power and have a negative correlation with the scanning space and scanning speed. After heat treating
the mechanical properties of the UHMWPE specimens are improved obviously and the relative density
tensile strength and the breaking elongation are 95.12%
24.08 MPa
and 334.82 MPa respectively. These results suggest that the mechanical properties of UHMWPE specimens fabricated by SLS is weaker than that fabricated by molding. Process optimization can not get the ideal performance
but the mechanical property can be enhanced to meet the requirements after heat treatment.
关键词
Keywords
references
RAJABI K E, HAMID B. Determination of optimum SLA process parameters of H-shaped parts[J]. J. Mech. Sci. Technol., 2013, 27(3):857-863.
BOSCHETTO A, VENIALI F. Intricate shape prototypes obtained by FDM[J]. Int. J. Mater. Form., 2010, 3(S1):1099-1102.
WEISENSEL L, TRAVITZKY N, SIEBER H. et al.. Laminated object manufacturing(LOM) of SiSiC composites[J]. Adv. Eng. Mater., 2004, 6(11):899-903.
丁利, 李怀学, 王玉岱, 等. 热处理对激光选区熔化成形316不锈钢组织与拉伸性能的影响[J]. 中国激光, 2015(4):187-193.DING L, LI H X, WANG Y D, et al.. Heat treatment on microstructure and tensile strength of 316 stainless steel by selective laser melting[J]. Chinese Journal of Lasers, 2015(4):187-193.(in Chinese)
宋长辉, 杨永强, 张曼慧, 等. 基于数字化3D技术的股骨假体再设计与激光选区熔化制造[J]. 光学精密工程, 2014, 22(8):2117-2126.SONG CH H, YANG Y Q, ZHANG M H, et al.. Redesign and selective laser melting manufacturing of femoral component based on digital 3D technology[J]. Opt. Precision Eng., 2014, 22(8):2117-2126.(in Chinese)
闫岸如, 杨恬恬, 王燕灵, 等. 变能量激光选区熔化IN718镍基超合金的成形工艺及高温机械性能[J]. 光学精密工程, 2015, 23(6):1695-1704.YAN A R, YANG T T, WANG Y L, et al.. Forming process and high-temperature mechanical properties of variable energy laser selective melting manufacturing IN718 superalloy[J]. Opt. Precision Eng., 2015, 23(6):1695-1704.(in Chinese)
樊仁轩. 激光选区烧结高分子材料的加工工艺改善及相应技术研究[D]. 广州:华南理工大学, 2015.FAN R X. The Study on Molding Quality Improvement and Corresponding Technology of High Polymer Material by Selective Laser Sintering[D]. Guangzhou:South China University of Technology, 2015.(in Chinese)
KRUTH J P, WANG X, LAOUI T, et al.. Lasers and materials in selective laser sintering[J]. Assembly Autom., 2003, 23(4):357-371.
SZILVIA E, DERMOT B, STEFAN L, et al.. Selective laser sintering of hydroxyapatite/poly-ε-caprolactone scaffolds[J]. Acta Biomater., 2010, 6(7):2511-2517.
GU D D, MEINERS W, WISSENBACH K, et al.. Laser additive manufacturing of metallic components:materials, processes and mechanisms[J]. Int. Mater. Rev., 2012, 57(3):133-164.
李小飞, 朱东彬, 董俊慧. 激光选区烧结及其在精密制造业中的应用[J]. 光学精密工程. 2013, 2(5):1222-1227.LI X F, ZHU D B, DONG J H. Selective laser sintering and its application to precision casting process for ceramic models[J]. Opt. Precision Eng., 2013, 2(5):1222-1227.(in Chinese)
WILLIAM H, MICHELLE G. Solidification in direct metal deposition by LENS processing[J]. JOM-US., 2001, 53(9):30-34.
CHAO G, GE W J, LIN F. Eeffects of scanning parameters on material deposition during electron beam selective melting of Ti-6Al-4V powder[J]. J. Mater. Process Tech., 2015, 217:148-157.
RIVEIRO A, SOTO R, DEL VAL J, et al.. Laser surface modification of ultra-high-molecular-weight polyethylene(UHMWPE) for biomedical applications[J]. Appl. Sure. Sci., 2014, 302:236-242.
KOBAYASHM, KOIDE T, HYON S H. Tribological characteristics of polyethylene glycol(PEG) as a lubricant for wear resistance of ultra-high-molecular-weight polyethylene(UHMWPE) in artificial knee join[J]. J. Mech. Behav. Biomed., 2014, 38:33-38.
RIMELL J T, MARQUIS P M. Selective laser sintering of ultra high molecular weight polyethylene for clinical applications[J]. Journal of Biomedical Materials Research, 2000, 53(4):414-420.
汪艳. 选择性激光烧结高分子材料及其制件性能研究[D]. 武汉:华中科技大学, 2005.WANG Y. Study on the Polymer Materials of Selective Laser Sintering and the Properties of Sintered Parts[D]. Wuhan:Huazhong University of Science and Technology, 2005.(in Chinese)
GOODRIDGE R D, HAGUE R J M, TUCK C J. An empirical study into laser sintering of ultra-high molecular weight polyethylene(UHMWPE)[J]. J. Mater. Process Tech., 2010, 210(1):72-80.
郑潇剑. 激光选区烧结设备改进及人工胫骨垫片设计与制造研究[D]. 广州:华南理工大学, 2015.ZHENG X J. Study on Improvement of Selective Laser Sintering Equipment and Design and Manufacturing of Artificial Tibial Gasket[D]. Guangzhou:South China University of Technology, 2015.(in Chinese)