LI Hang, YAN Chang-xiang, YU Ping etc. Measurement of modulation transfer function for IR imaging system[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 698-708
LI Hang, YAN Chang-xiang, YU Ping etc. Measurement of modulation transfer function for IR imaging system[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 698-708 DOI: 10.3788/OPE.20162404.0698.
Measurement of modulation transfer function for IR imaging system
The principles of optical Modulation Transfer Function(MTF) measurement by the edge method for an optical system were researched and an improved inclined edge method for the MTF measurement of an infrared imaging system was proposed. As the edge angle measurement error and noise will cause the MTF measurement error of the infrared system
the Canny operator
line fitting and Edge Spread Function (ESF) reconstruction row number changes were combined to improve the measuring accuracy of the MTF
meanwhile
an effective denoise algorithm for the ESF and the Line Spread Function (LSF)was used to reduce the effect of noise on the MTF measuring accuracy.With the methods mentioned above
the measurement errors of MTF were reduced systematically. An experimental platform was set up. Based on the theoretical model of infrared imaging system and MTF curve obtained by detected parameters
the feasibility of the proposed method was verified and the effect of changed edge angle on the MFT measuring accuracy was analyzed. Experimental results show that the measurement accuracy of MTF curve obtained by the method is 0.010
the measuring repeat accuracy is 0.008
and the edge angle should be kept between 2 ånd 10 °. It concludes that the method effectively reduces the influences of the edge angle measurement error and noise on the MTF measurement
and the measuring results show good measurement repeatability.
关键词
Keywords
references
骆守俊, 夏寅辉, 杨宁宁, 等. 扫描型长波红外连续变焦光学系统[J]. 中国光学, 2015, 8(1):107-113. LOU SH J, XIA Y H, YANG N N. Long-wavelength infrared continuous zoom scanning optical system[J]. Chinese Optics, 2015, 8(1):107-113. (in Chinese)
董建婷, 陈伟, 史漫丽. 基于刃边法的MTF实时测试技术实现[J]. 计算机测量与控制, 2013, 21(2):349-351. DONG J T, CHEN W, SHI M L. Implementation of MTF real-time test with knife-edge method[J]. Computer Measurement & Control, 2013, 21(2):349-351. (in Chinese)
卞江, 马冬梅, 孙鸽, 等. 红外光电成像系统MTF测试技术分析[J]. 应用光学, 2013, 34(5):748-753. BIAN J, MA D M, SUN G, et al.. MTF test technology analysis of infrared electro-optical imaging system[J]. Journal of Applied Optics, 2013, 34(5):748-753.(in Chinese)
李旭东, 惠渭生, 胡铁力, 等. 红外热成像系统调制传递函数(MTF)测试研究[J]. 应用光学, 2006, 27(4):323-326. LI X D, HUI W SH, HU T L, et al.. Research on MTF measurement for thermal imaging systems[J]. Journal of Applied Optics, 2006, 27(4):323-326.(in Chinese)
赵占平, 付兴科, 黄巧林, 等. 基于刃边法的航天光学遥感器在轨MTF测试研究[J]. 航天返回与遥感, 2009, 30(2):37-43. ZHAO ZH P, FU X K, HUANG Q L, et al.. On orbit MTF test research of remote sensors based on knife-edge method[J]. Spacecraft Recovery & Remote Sensing, 2009, 30(2):37-43. (in Chinese)
龚绍润, 高峰, 徐雅洁. 数字化X射线成像系统MTF的刀口测量法[J]. 天津大学学报, 2010, 43(7):611-618. GONG SH R, GAO F, XUN Y J. Edge measurement for modulation transfer function in digital radiography x-ray imaging system[J]. Journal of Tianjin University, 2010, 43(7):611-618. (in Chinese)
李铁成, 陶小平, 冯华君, 等. 基于倾斜刃边法的调制传递函数计算及图像复原[J]. 光学学报, 2010, 30(10):2891-2897. LI T CH, TAO X P, FENG H J, et al.. Modulation transfer function calculation and image restoration based on slanted-edge method[J]. Acta Optical Sinica, 2010, 30(10):2891-2897.(in Chinese)
常松涛, 孙志远, 张尧禹, 等. 基于点扩散函数的小目标辐射测量[J]. 光学精密工程, 2014, 22(11):2879-2887. CHANG S T, SUN ZH Y, ZHANG Y Y, et al.. Radiation measurement of small targets based on PSF[J]. Opt. Precision Eng., 2014, 22(11):2779-2887. (in Chinese)
滕今朝, 邱杰. 利用Hough变换实现直线的快速精确检测[J]. 中国图象图形学报, 2008, 13(2):234-237. TENG J CH, QIU J. Fast and precise detection of straight line with Hough transform[J]. Journal of Image and Graphics, 2008, 13(2):234-237. (in Chinese)
高峰, 朱庆阵, 周仲兴, 等. 基于插值数浮动的MTF精确测量方法[J]. 纳米技术与精密工程, 2014, 12(2):107-116. GAO F, ZHU Q ZH, ZHOU ZH X. Accurate measurement of MTF based on interpolation floating method[J]. Nanotechnology and Precision Engineering, 2014, 12(2):107-116.(in Chinese)
张晓琳, 杜国浩, 邓彪, 等. 刀口法高精度测量X射线CCD调制传递函数研究[J]. 光学学报, 2010, 30(6):1680-1687. ZHANG X L, DU G H, DENG B, et al.. High precision measurement of modulation transfer function for X-ray CCD with knife-edge method[J]. Acta Optical Sinica, 2010, 30(6):1680-1687. (in Chinese)
李宁, 张云峰, 刘春香, 等. 1 m口径红外测量系统的辐射定标[J]. 光学精密工程, 2014, 22(8):2054-2060. LI N, ZHANG Y F, LIU CH X, et al.. Calibration of 1 m aperture infrared theodolite[J]. Opt. Precision Eng., 2014, 22(8):2054-2060. (in Chinese)
徐保树, 史泽林, 冯斌. 一种光电成像系统调制传递函数的测量方法[J]. 光学学报, 2011, 31(11):1-10. XU B SH, SHI Z L, FENG B. Modulation transfer function measurement method of electro-optical imaging system[J]. Acta Optica Sinica, 2011, 31(11):1-10.(in Chinese)
黄巧林, 姜伟. 航天光学遥感器MTF测试技术研究[J]. 航天返回与遥感, 2006, 27(4):33-37. HUANG Q L, JIANG W. MTF test technology of aerospace optical remote sensor[J]. Spacecraft Recovery & Remote Sensing, 2006, 27(4):33-37. (in Chinese)
Study on noise characteristics of photoelectric detection system and noise reduction design
Image motion calculation and error distribution for aerial whisk-broom imaging
Evaluation and comparison of modulation transfer function for FY-3B/C MERSI on early orbit
Signal recovery of noise introduced after compressed sensing
Optimization of bandwidth for phase-locked loop in OTU
Related Author
宋悦铭
Yue-ming SONG
Hang ZHANG
Guan-yu LIN
Yu HUANG
Long-qi WANG
Yue LI
Yi LI
Related Institution
Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences
Center of Materials Science and Optoelectrics Engineering, University of Chinese Academy of Sciences
Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences
Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, National Satellite Meteorological Center, China Meteorological Administration (LRCVES/CMA)
School of Optoelectronics, Beijing Institute of Technology