HUANG Hong, ZHENG Xin-lei,. Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 873-881
HUANG Hong, ZHENG Xin-lei,. Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 873-881 DOI: 10.3788/OPE.20162404.0873.
Hyperspectral image classification with combination of weighted spatial-spectral and KNN
A spatial consistency measurement method based on the Weighted Spatial-Spectral Distance(WSSD) is proposed and applied to the K Nearest Neighbor(KNN) classifier
and a new hyperspectral image classification algorithm is obtained. On the basis of the physical characters of hyperspectral images
the proposed algorithm combines both spatial window and spectral factor to obtain the spatial information and spectral information
and uses the spatial nearest points to reconstruct the center point and to reveal the local spatial structure. With effectively reducing the redundant information in the image
this algorithm increases the consistency of the same kinds pixels and the difference of the different kinds pixels and obtains extract discriminating features
so it implements the consistency measurement between the data points. The experiments were performed on the Indian Pines and PaviaU hyperspectral data sets. Experiment results show that the WSSD-KNN algorithm has better classification accuracy than other algorithms when it is applied to the classification of hyperspectral image
and the overall classification accuracies reach 91.72% and 96.56%
respectively. With the spectral information
spatial information and extract discriminating features
the proposed algorithm effectively improves ground object classification accuracy of hyperspectral data and has better recognition ability in less train samples.
关键词
Keywords
references
李志敏, 张杰, 黄鸿, 等. 面向高光谱图像分类的半监督丛流形学习[J]. 光学精密工程, 2015, 23(5):1434-1442. LI ZH M, ZHANG J, HUANG H, et al.. Semi-supervised bundle manifold learning for hyperspectral image classification[J]. Opt. Precision Eng., 2015, 23(5):1434-1442. (in Chinese)
张达, 郑玉权. 高光谱遥感的发展与应用[J]. 光学与光电技术, 2013, 11(3):67-73. ZHANG D, ZHENG Y Q. The development and application of hyperspectral remote sensing[J]. Optical and Photoelectric Technology, 2013, 11(3):67-73. (in Chinese)
唐中奇, 付光远, 陈进, 等. 基于多尺度分割的高光谱图像稀疏表示与分类[J]. 光学精密工程, 2015, 23(9):2708-2714. TANG ZH Q, FU G Y, CH J, et al.. Multiscale segmentation-based sparse coding for hyperspectral image classification[J]. Opt. Precision Eng., 2015, 23(9):2708-2714. (in Chinese)
FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al.. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 2013, 101(3):652-675.
黄鸿, 曲焕鹏. 基于半监督稀疏鉴别嵌入的高光谱遥感影像分类[J]. 光学精密工程, 2014, 22(2):434-442. HUANG H, QU H P. Hyperspectral remote sensing image classification based on SSDE[J]. Opt. Precision Eng., 2014, 22(2):434-442. (in Chinese)
MA L, CRAWFORD M M, TIAN J W. Local manifold learning-based k-Nearest-Neighbor for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11):4099-4109.
SHAFRI H Z M, SUHAILI A, MANSOR S. The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis[J]. Journal of Computer Science, 2007, 3(6):419-423.
GUO B F, GUNN S R, DAMPER R I, et al.. Customizing kernel functions for SVM-based hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2008, 17(4):622-629.
郭敬明, 何昕, 魏仲慧. 基于在线支持向量机的Mean Shift彩色图像跟踪[J]. 液晶与显示, 2014, 29(1):120-128. GUO J M, HE X, WEI ZH H. New mean shift tracking for color image based on online support vector machine[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(1):120-128. (in Chinese)
魏峰, 何明一, 梅少辉. 空间一致性邻域保留嵌入的高光谱数据特征提取[J]. 红外与激光工程, 2012, 41(5):1249-1254. WEI F, HE M Y, MEI SH H. Hyperspectral data feature extraction using spatial coherence based neighborhood preserving embedding[J]. Infrared and Laser Engineering, 2012, 41(5):1249-1254. (in Chinese)
VELASCO F S, MANIAN V. Improving hyperspectral image classification using spatial preprocessing[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2):297-301.
TAN K, HU J, LI J, et al.. A novel semi-supervised hyperspectral image classification approach based on spatial neighborhood information and classifier combination[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105:19-29.
MOHAN A, SAPIRO G, BOSCH E. Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(2):206-210.
PU H Y, CHEN Z, WANG B, et al.. A novel spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7008-7022.
KANG X D, LI S T, BENEDIKTSSON J A. Spectral-Spatial hyperspectral image classification with Edge-Preserving Filtering[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2666-2677.
YUAN H L, TANG Y Y, LU Y, et al.. Spectral-Spatial classification of hyperspectral image based on discriminant analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2035-2043.