The original spatio-temporal context (STC) tracking algorithm does not take the tracking results into account when it updates an object model
so the object model is wrongly updated and hard to be recovered after long term occlusion. To solve this problem
an improved spatio-temporal context tracking algorithm based on a dual-object model is proposed in this paper. In this method
an auxiliary object model is introduced to evaluate the effectiveness of original STC algorithm
and to update the object model based on the tracking results accordingly. By using texture information rather than correlation information as the characteristics
the auxiliary object model evaluates exactly the updated contents and corrects wrong updates after long-term occlusion. Experimental results on several groups dada sets indicate that the success rate of the proposed algorithm is 82%
and the center location error is 8 pixels. It implements the stable tracking and the tracking precision is superior to that of the original STC algorithm in complex scenes
especially after long-term occlusions.
关键词
Keywords
references
WU Y, LIM J W, YANG M H. Online object tracking:a benchmark[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2013:2411-2418.
YILMAZ A, JAVED O, SHAH M. Object tracking:a survey[J]. ACM Computing Surveys, 2006, 38(4):13.
李静宇,王延杰. 基于子空间的目标跟踪算法研究[J]. 液晶与显示,2014,29(4):617-622. LI J Y, WANG Y J. Subspace-based target tracking algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2014,29(4):617-622.(in Chinese)
XU C, GAO M, YANG Y. Self-tuning hierarchical Kalman-particle filter for efficient target tracking[J]. Infrared and Laser Engineering,2015,44(6):1942-1949.
陈东成,朱明,高文, 等. 在线加权多示例学习实时目标跟踪[J]. 光学精密工程, 2014,22(6):1661-1667. CHEN D CH, ZHU M, GAO W, et al.. Real-time object tracking via online weighted multiple instance learning[J]. Opt. Precision Eng., 2014,22(6):1661-1667. (in Chinese)
程帅,曹永刚,孙俊喜,等. 用基于二值化规范梯度的跟踪学习检测算法高效跟踪目标[J]. 光学精密工程, 2015,23(8):2339-2348. CHENG SH, CAO Y G, SUN J X, et al.. Efficient target tracking by TLD based on binary normed gradients[J].Opt. Precision Eng., 2015,23(8):2339-2348. (in Chinese)
毛征,袁建建,吴珍荣,等. 基于在线特征选择的实时压缩跟踪[J]. 光学精密工程,2014,22(3):730-736. MAO ZH, YUAN J J, WU ZH R, et al.. Real-time compressive tracking based on online feature selection[J].Opt. Precision Eng., 2014,22(3):730-736. (in Chinese)
BOLME D S, BEVERIDGE J R, BRUCE A D, et al.. Visual object tracking using adaptive correlation filters[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco:IEEE, 2010:2544-2550.
HENRIQUES J F, CASEIRO R, MARTINS P, et al.. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
ZHANG K H, ZHANG L, LIU Q S, et al.. Fast Visual Tracking Via Dense Spatio-Temporal Context Learning[M]. Zurich:Springer, 2014:127-141.
DAI M, LIN P J, WU L J, et al.. Orderless and blurred visual tracking via spatio-temporal Context[C]. MultiMedia Modeling, Springer, 2015:25-36.
WEI X, ZHANG S, CHAN S C. A novel visual object tracking algorithm using multiple spatial context models and Bayesian Kalman filter[C].2015 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal:IEEE, 2015:1034-1037.
吕枘蓬, 蔡肖芋, 董亮, 等. 基于TLD框架的上下文目标跟踪算法[J]. 电视技术, 2015, 39(9):6-9 LU R P, CAI X Y, DONG L, et al.. Context object tracking algorithm based on TLD framework[J]. Video Engineering, 2015, 39(9):6-9.(in Chinese)
KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-Learning-Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7):1409-1422.
ANNA B, ANDREW Z, XAVIER M. Image classification using random forests and ferns[C]. Proceedings of the 2007 IEEE International Conference on Computer Vision, Brazil:IEEE, 2007:1-8.
ZHANG K H, ZHANG L, YANG M H. Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(10):2002-2015.
HELMUT G, MICHAEL G, HORST B. Real-time tracking via on-line boosting[C]. BMVC. Edinburgh:British Machine Vision Association, 2006,1:6.
AMIT A, EHUD R, ILAN S. Robust fragments-based tracking using the integral histogram[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York:IEEE, 2006,1:798-805.
JUNSEOK K, KYOUNG M L. Tracking by sampling trackers[C]. Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona:IEEE, 2011:1195-1202.
JUNSEOK K, KYOUNG M L. Visual tracking decomposition[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco:IEEE, 2010:1269-1276.
THANG B D, NAM V, GÉRARD M. Context tracker:Exploring supporters and distracters in unconstrained environments[C]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Colorado Springs:IEEE, 2011:1177-1184.