浏览全部资源
扫码关注微信
1.哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001
2.上海微小卫星工程中心, 上海 201210
3.吉林大学 仪器科学与电器工程学院, 吉林 长春 130061
Received:25 March 2016,
Accepted:07 May 2016,
Published:2016-10
移动端阅览
Yan-fang LIU, Xing-fu LIU, Nai-ming QI, et al. Design of supper low disturbance torque air bearing table with active compensation[J]. Optics and precision engineering, 2016, 24(10): 2432-2441.
Yan-fang LIU, Xing-fu LIU, Nai-ming QI, et al. Design of supper low disturbance torque air bearing table with active compensation[J]. Optics and precision engineering, 2016, 24(10): 2432-2441. DOI: 10.3788/OPE.20162410.2432.
由于微纳卫星反作用飞轮的输出力矩与气浮转台的干扰力矩属于同一量级,故无法直接采用气浮转台实现微纳卫星姿态动力学仿真及姿控系统的地面试验验证。为了解决这一问题,设计并研制了主动补偿式超低干扰力矩气浮转台。对气浮转台的干扰力矩进行分析,提出了3种减小干扰力矩的方法:通过优化设计,降低了黏滞阻尼力矩;通过配置斜向节流孔,并单独供气,产生大小可调的主动涡流以抵消气浮轴承的固有涡流,从而降低涡流力矩;利用气浮轴承的摆动特性实现高精度平衡调节,减弱了重力诱导力矩。最后,设计了微小力矩测量装置,测量了剩余干扰力矩并基于测试结果来指导涡流力矩和重力诱导力矩补偿过程。测试结果显示:气浮转台实现的干扰力矩小于5×10
-5
Nm,小于反作用飞轮的最小输出1×10
-4
Nm,满足微纳卫星姿态动力学及控制的地面验证需求。
As the output moments of reaction wheels for micro-satellites and nano-satellites are the same as the disturbance moment of an Air Bearing Table (ABT)
the attitude dynamic simulation and ground test of the micro-satellites and nano-satellites can not be implemented directly by the ABT. To solve the problems
an active compensation ABT with a supper low disturbance moment was designed and developed. The disturbance moment of the ABT was analyzed and three kinds of methods to reduce the disturbance moment were proposed. Firstly
the viscous damping moment was reduced by optimizing design; Then
the vertex moment was reduced by setting sloping slant orifices to generate an active vertex to balance the inherent vertex of the air bearing
and to reduce the inherent vertex moment. Finally
the swing characteristics of air bearing was used to implement high precise balance adjustment and to reduce the gravity induced moment. A measuring device of micro-moment was designed and the remaining vertex moment was measured and the measuring results were used to direct the compensation of the vertex moment and gravity induced moment. Experimental results indicate that the disturbance moment of the ABT is smaller than 5×10
-5
Nm
which is less than the minimum output moment(1×10
-4
Nm) of the reaction wheel. Obtained results satisfy the requirements of the ground simulation of attitude dynamics and the control of micro-satellites and nano-satellites.
李治国, 高立民, 张博妮,等. 空间光电跟踪系统动量平衡设计与试验[J]. 光学 精密工程, 2013, 21(1):62-68.
LI ZH G, G GAO L M, ZHANG B N, et al.. Design and experiment of momentum balance wheels for optoelectric tracking gimbals[J]. Opt. Precision Eng., 2013, 21(1):62-68. (in Chinese)
王玉鹏, 王凯, 贾瑞栋, 等. 精指向自解锁星载太阳指向器设计与应用[J]. 光学 精密工程, 2016, 24(1):65-72.
WANG Y P, WANG K, JIA R D, et al.. Design and application of accurate pointing and auto-unlocking sun tracker on satellite[J]. Opt. Precision Eng., 2016, 24(1):65-72. (in Chinese)
王绍举, 金光, 徐开. 高精度激光通信小卫星星座仿真平台设计[J]. 光学 精密工程, 2008, 16(8):1554-1559.
WANG SH J, JIN G, XU K. Design of simulation platform for high precision laser communication small satellite constellation[J]. Opt. Precision Eng., 2008, 16(8):1554-1559. (in Chinese)
CUI P L, ZHANG H J, YAN N, et al.. Performance testing of a magnetically suspended double gimbal control moment gyro based on the single axis air bearing table[J]. Sensors, 2012, 12(7):9129-9145.
INUMOH L O, FORSHAW J L, HORRI N M. Tilted wheel satellite attitude control with air-bearing table experimental results[J]. Acta Astronautica, 2015, 117:414-429.
田留德, 赵建科, 薛勋, 等. 基于单轴气浮台的角动量输出测量方法[J]. 中国测试, 2011, 37(6):41-44.
TIAN L D, ZHAO J K, XUE X, et al.. Measurement method angular momentum output based on one-axis air bearing test-bed[J]. China Measurement & Test, 2011, 37(6):41-44. (in Chinese)
饶卫东, 徐李佳. 单轴挠性卫星快速机动试验台[J]. 空间控制技术与应用, 2011, 37(5):59-62.
RAO W D, XU L J. A simulation test-bed for rapid maneuver experiment of flexible satellite[J]. Aerospace Control and Application, 2011, 37(5):59-62. (in Chinese)
JANA L S, MASON A P, CHARISTOPPHER D H. Historical review of air-bearing spacecraft simulators[J]. Journal of Guidance, Control, and Dynamics,2003, 26(4):513-522.
MASON A P, ANDREW R C. An air bearing-based teat-bed for momentum-control systems and spacecraft line of sight[C]. Proceedings of the 13th AAS/AIAA Space Flight Mechanics Winter Meeting, AAS03-127.
KIM B, VELENIS E, KRIENGSIRI P, et al.. A spacecraft simulator for research and education[C]. AAS/AIAA Astrodynamics Conference, Quebec City, Canada, 2001, AAS 01-367.
JUNG D, TSIOTRAS P. A 3-dof experimental test-bed for integrated attitude dynamics and control research[C]. AIAA Guidance, Navigation and Control Conference, Austin, Texas, 2003, 03-5331. http://cn.bing.com/academic/profile?id=2322725572&encoded=0&v=paper_preview&mkt=zh-cn
BLACKWOOD G, SERABYN E, DUBOVITSKY S, et al.. System design and technology development for the terrestrial planet finder[C]. SPIE International Symposium on Optical Science and Technology, SPES 48th Annual Meeting, San Diego, California, 2003:5170-29.
TIEN J Y, SRINIVASAN J M, YONG L E, et al.. Formation acquisition sensor for the terrestrial planet finder mission[C]. IEEE Aerospace Conference Proceedings, Big Sky, Montana, 2004:6-13. http://cn.bing.com/academic/profile?id=1507649252&encoded=0&v=paper_preview&mkt=zh-cn
OTERO A S, CHEN A, MOLLER D W, et al.. SPHERES-development of an ISS laboratory for formation flight and docking research[C]. IEEE Aerospace Conference Proceedings, Piscataway, NJ, 2002:1-59.
WETTE M, SOHL G, SCHARF D, et al.. The formation algorithms and simulation testbed[C]. New York Times Book Review, 2004, 29(5).
REGEHR M W, ACIKMESE A B, AHMED A, et al.. The formation control testbed[C]. IEEE Aerospace Conference Proceedings, Big Sky, Montana, 2004:557-564.
徐开, 陈长青, 关文翠, 等. 小卫星姿控xPC半物理仿真系统设计[J]. 光学 精密工程, 2009, 17(2):362-367.
XU K, CHEN CH Q, GUANG W C, et al.. Design of xPC semi-physical simulation system for small-satellite attitude control[J]. Opt. Precision Eng., 2009, 17(2):557-564. (in Chinese)
徐在峰. 三轴气浮台球轴承制造及安装误差引起的涡流力矩的研究[D]. 哈尔滨:哈尔滨工业大学, 2007. http://cdmd.cnki.com.cn/article/cdmd-10213-2008195107.htm
XU Z F. Research on Vortex Torque of the Three-axis Air Bearing Testbed Caused by Manufacture Errors and Fix-errors of Ball Bearing[D]. Harbin:Harbin Institute of Technology, 2007. (in Chinese)
向东, 杨庆俊, 包钢,等. 三轴气浮平台常值干扰力矩的分析与补偿[J]. 宇航学报, 2009, 30(2):448-452.
XIANG D, YANG Q J, BAO G, et al.. Research on analyzing and compensation of the steady disturbing torque of the three axis air bearing table[J]. Journal of Astronautics, 2009, 30(2):448-452. (in Chinese)
郭楠楠. 卫星仿真三轴气浮台关键检测技术研究[D]. 哈尔滨:哈尔滨工业大学, 2012. http://cdmd.cnki.com.cn/article/cdmd-10213-1013036134.htm
GUO N N. Study on the Critical Measurement Technology in Three-axis Simulator Used for Satellite Simulation[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
姚英学, 杜建军, 刘暾,等. 制造误差对气体静压轴承涡流力矩影响分析方法研究[J]. 航空学报, 2003, 24(2):124-128.
YAO Y X, DU J J, LIU T, et al.. Numerical analysis of manufacturing error influence on vortex torque of externally pressurized gas bearings[J]. Acta Aeronautica Et Astronautica Sinica, 2003, 24(2):124-128. (in Chinese)
梁迎春, 刘晶石, 孙雅洲,等. 狭缝和气膜尺寸对气浮陀螺仪涡流力矩的影响[J]. 润滑与密封, 2011, 36(3):1-5.
LIANG Y CH, LIU J SH, SUN Y ZH, et al.. Effects of slit width and film thickness on vortex torque of air supported gyroscope[J]. Lubrication Engineering, 2011, 36(3):1-5. (in Chinese)
秦冬黎, 姚英学. 小孔节流动静压混合气体润滑球轴承的干扰力矩分析[J]. 润滑与密封, 2007, 32(4):131-135.
QIN D L, YAO Y X. Disturbing torque analysis of orifice compensated hybrid gas spherical bearing[J]. Lubrication Engineering, 2007, 32(4):131-135. (in Chinese)
毕国龙. 三轴气浮转台系统技术实现研究[D]. 哈尔滨工业大学, 2012. http://cdmd.cnki.com.cn/article/cdmd-10213-1013036072.htm
BI G L. Research on Technical Implementation of Three-axis Air Bearing System[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
王新岗. 三自由度气浮台涡流力矩的研究[D]. 哈尔滨工业大学, 2006. http://cdmd.cnki.com.cn/article/cdmd-10213-2006172088.htm
WANG X G. Study of Vortex Moment of the Three Degree of Freedom Air Bearing Table[D]. Harbin:Harbin Institute of Technology, 2006. (in Chinese)
任迪. 三轴气浮台气体球轴承静态特性及涡流力矩的研究[D]. 哈尔滨工业大学, 2009. http://cdmd.cnki.com.cn/article/cdmd-10213-2011015857.htm
REN D. Study on Static Characteristics and Vortex Torque of Spherical Air Bearings for Three-axis Test-bed[D]. Harbin:Harbin Institute of Technology, 2009. (in Chinese)
林振华, 董云峰. 基于单轴气浮台摆动特性的调节平衡方法[J]. 科技导报, 2010, 28(2):46-49.
LIN ZH H, DONG Y F. Balance of single axis air bearing table based on its swing characteristics[J]. Science & Technology Review, 2010, 28(2):46-49. (in Chinese)
张勇, 孙宁, 曹国华. 单轴气浮台低速自由转动规律分析[J]. 工程设计学报, 2009, 16(6):436-439.
ZHANG Y, SUN N, CAO G H. The regularity analysis of low velocity free rotation of single axis air bearing table[J]. Journal of Engineering Design, 2009, 16(6):436-439. (in Chinese)
杜建军,姚英学,高栋,等. 气体静压轴颈-止推串接型轴承涡流力矩的有限元分析[J]. 润滑与密封, 2005, (3):57-59.
DU J J, YAO Y X, GAO D, et al.. A numerical analysis of vortex torque of externally pressurized gas journal thrust bearings[J]. Lubrication Engineering, 2005, (3):57-59. (in Chinese)
0
Views
627
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution