浏览全部资源
扫码关注微信
西华大学无线电管理技术研究中心, 四川 成都 610039
Received:12 June 2016,
Accepted:12 August 2016,
Published:2016-10
移动端阅览
Zhi-sheng Gao, Long GENG, Cheng-fang ZHANG, et al. Millimeter wave dim small target detection based on target and background modeling[J]. Optics and precision engineering, 2016, 24(10): 2601-2611.
Zhi-sheng Gao, Long GENG, Cheng-fang ZHANG, et al. Millimeter wave dim small target detection based on target and background modeling[J]. Optics and precision engineering, 2016, 24(10): 2601-2611. DOI: 10.3788/OPE.20162410.2601.
基于被动毫米波成像特性,提出了改进的稀疏表示——圆周中心差(ISR-CSCD)算法来解决被动毫米波图像中弱小目标与背景区分度较弱,目标可提取特征较少的问题。该算法通过改进稀疏表示方法完成背景抑制与目标增强。依据目标与周围背景特征先验,提出了圆周中心差背景抑制算法对检测图像进行背景抑制。然后,融合改进稀疏表示方法和圆周中心差背景抑制算法的结果得到抑制了背景的目标增强图像。最后,基于恒虚警率的检测方法完成了弱小目标的检测。对不同场景下的毫米波图像进行了实验检测,结果表明,与主流算法图像稀疏表示(SR)法、鲁棒规则核回归牛顿算法(NRRKR),空时联合分类稀疏表示算法(STCSR)和累积中心与周边差异测量算法(ACSDM)相比,ISR-CSCD算法具有更低的虚警率、更高的检测精度、更强的鲁棒性。对各种虚警率、信噪比之下的毫米波弱小目标检测结果显示,ISR-CSCD检测率相对于其它算法平均提高了约15%。
On the basis of characteristics of Passive Millimeter Wave (PMMW) imaging
an Improved Sparse Representation-Circle-Surround Center Difference(ISR-CSCD) algorithm is proposed to improve the weaker distinction between dim small target and background and the smaller target features to be extracted. The algorithm firstly improves the sparse representation to complete the background suppression and target enhancement. Then
according to the features and prior knowledge of the target and the surrounding background
the background suppression algorithm of circle-surround center difference is used to suppress the background of the image. The results by two methods mentioned above are fused to get the final enhanced target image. Finally
the Constant False Alarm Rate (CFAR) is used to complete dim small target extraction. The millimeter wave images in different scenes are detected. The results show that as compared with the mainstream algorithms
Sparse representation (SR)
Newton methods for Robust Regularized Kernel Regression(NRRKR)
Spatio-temporal Classification Sparse Representation(STCSR) and Accumulated Center-surround Difference Measurement(ACSDM)
the ISR-CSCD algorithm has a lower false alarm rate
higher detection accuracy and stronger robustness. For all kinds of false alarm rates and the signal to noise ratios of the millimeter wave small target detection results in statistics
the detection rate of ISR-CSCD is increased by about 15% as compared with other algorithms.
WANG P, TIAN J, GAO C Q. Infrared small target detection using directional highpass filters based on LS-SVM[J]. Electronics Letters, 2009,45(3):156-158.
DESHPANDE S D, ER M H, VENKATESWARLU R, et al.. Max-mean and max-median filters for detection of small targets[J]. Proc. SPIE, 1999, 3809:74-83.
ZENG M, LI J, PENG Z. The design of top-hat morphological filter and application to infrared target detection[J]. Infrared Physics & Technology, 2006, 48:67-76.
CAO Y, LIU R M, YANG J. Small target detection using two-dimensional least mean square (TDLMS) filter based on neighborhood analysis[J]. International Journal of Infrared and Millimeter Waves, 2008, 29(2):188-200.
龚俊亮,何昕,魏仲慧,等. 采用尺度空间理论的红外弱小目标检测方法[J]. 红外与激光工程, 2013,42(9):2566-2573.
GONG J L, HE X, WEI ZH H, et al.. Infrared dim and small target detection method using scale-space theory[J]. Infrared and Laser Engineering, 2013, 42(9):2566-2573. (in Chinese)
YANG H, HU F, CHEN K, et al.. A robust regularization kernel regression algorithm for passive millimeter wave imaging target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5), 915-919.
王刚,陈永光,杨锁昌,等. 采用图像块对比特性的红外弱小目标检测[J]. 光学 精密工程,2015,23(5):1424-1433.
WANG G, CHEN Y G, YANG S CH, et al.. Detection of infrared dim small target based on image patch contrast[J].Opt. Precision Eng., 2015, 23(5):1424-1433. (in Chinese)
靳永亮,王延杰,刘艳滢,等. 红外弱小目标的分割预检测[J]. 光学 精密工程,2012,20(1):171-178.
JIN Y L, WANG Y J, LIU Y J, et al.. Pre-detection method for small infrared target[J]. Opt. Precision Eng., 2012, 20(1):171-178. (in Chinese)
XIE K, FU K, ZHOU T, et al.. Small target detection based on accumulated center-surround difference measure[J]. Infrared Physics & Technology, 2014, 67:229-236.
LIU Z, CHEN C Y, SHEN X B, et al.. Detection of small objects in image data based on the nonlinear principal component analysis neural network[J]. Optical Engineering, 2005, 44(9):093604(1-9).
胡暾,赵佳佳,曹原,等. 基于显著性及主成分分析的红外小目标检测[J]. 红外与毫米波学报,2010,29(4):303-306.
HU T, ZHAO J J, CAO Y, et al.. Infrared small target detection based on saliency and principle component analysis[J]. J.Infrared Millim.Waves, 2010, 29(4):303-306. (in Chinese)
LIU R M, ZHI H J, Infrared point target detection with fisher linear discriminant and kernel fisher linear discriminant[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(12):1491-1502.
赵佳佳,唐峥远,杨杰,等. 基于图像稀疏表示的红外小目标检测算法[J]. 红外与毫米波学报,2011,30(2):156-162.
ZHAO J J, TANG ZH Y, YANG J, et al.. Infrared small target detection based on image sparse representation[J]. J.Infrared Millim.Waves, 2011, 30(2):156-162. (in Chinese)
王会改,李正周,顾园山,等. 基于多尺度自适应稀疏字典的小弱目标检测方法[J]. 红外与激光工程,2014,43(7):2371-2378.
WANG H G, LI ZH ZH, GU Y SH, et al.. Dim target detection method based on multi-scale adaptive sparse dictionary[J]. Infrared and Laser Engineering, 2014, 43(7):2371-2378. (in Chinese)
YI C, NASSER M N, TRAC D T. Sparse representation for target detection in hyperspectral imagery[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3):629-640.
LI Z Z, DAI Z, FU H X, et al.. Dim moving target detection algorithm based on spatio-temporal classification sparse representation[J]. Infrared Physics & Technology, 2014, 67:273-282.
CHEN Y, NASRABADI N M, TRAN T D. Sparse representation for target detection in hyperspectral imagery[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3):629-640.
AHARON M, ELAD M, BRUCKSTEIN A, et al.. K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing, 2006, 54(11):4311-4322.
JOEL A T, ANNA C G. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2014, 53(12):4655-4666.
JMM A. A generalized likelihood radio test for detecting land mines using multispectral images[J].IEEE Geoscience & Remote Sensing Letters, 2008, 5(3):547-551.
ZHAO J F, CHEN J W, CHEN Y T, et al.. Sparse-representation-based automatic target detection in infrared imagery[J]. Infrared Physics & Technology, 2013, 56(1):85-92.
GAO C Q, MENG D Y, YANG Y, et al.. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12):4996-5009.
0
Views
569
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution