浏览全部资源
扫码关注微信
青岛理工大学 机械工程学院, 山东 青岛 266520
Received:10 May 2016,
Accepted:20 June 2016,
Published:25 January 2017
移动端阅览
Su-li HAN, Chao LI, Feng GUO, et al. Velocity profile measurement of oil films in a confined gap based on FRAP[J]. Editorial office of optics and precision engineeri, 2017, 25(1): 141-147.
Su-li HAN, Chao LI, Feng GUO, et al. Velocity profile measurement of oil films in a confined gap based on FRAP[J]. Editorial office of optics and precision engineeri, 2017, 25(1): 141-147. DOI: 10.3788/OPE.20172501.0141.
薄油膜润滑广泛存在于各类精密机械与微机电系统中。微纳米间隙内的润滑油流动是影响薄膜润滑承载力的重要因素,但目前薄润滑油膜的流速测量仍然缺少有效手段。本文基于荧光漂白恢复显微技术和漂白区域形状演化过程的成像分析,建立了油膜流速测量系统,可以对微米间隙润滑油膜的速度分布进行原位测量。利用建立的系统获得了厚度为8
μ
m时聚丁烯PB450润滑油膜的库埃特流速分布。重建的荧光漂白强度分布曲线和实验测量结果的皮尔森相关系数大于0.95,且流速分布符合已有润滑理论,证明了测量结果的可靠性。
The flow of lubricant oil films in confined gaps of micro-scale is a significant factor to affect load-carrying capacity of lubrication films in precision machines and micro-electro-mechanical systems (MEMS). In order to research the lubricating property of thin lubricant film the paper established through-thickness velocity profile measurement system and carried out a on-line situ measurement on through-thickness velocity profile of thin oil film under confined micro-gaps
based on fluorescence recovery after photobleaching (FRAP) and imaging analysis of shape changes process in the bleached area. The method adopted an assumption that the fluorescence intensity is distributed and layered along the film thickness direction
combined two-dimensional bleaching ability distribution information varying with time to acquire velocity distribution of the film thickness direction and the velocity profile of a 8
μ
m thickness of PB450 polybutene lubricant film. Pearson correlation coefficient of the experiment result and reconstructed fluorescent agent intensity distribution curve is greater than 0.95 and the velocity profile conforms to existing lubrication theory
which proves the reliability of the measuring results.
温诗铸, 黄平. 摩擦学原理[M]. 第4版. 北京:清华大学出版社, 2012.
WEN S ZH, HUANG P. Principles of Tribology[M]. Fourth edition. Beijing:Tsinghua University Press, 2012.(in Chinese)
THOMPSON P A, TROIAN S M. A general boundary condition for liquid flow at solid surfaces[J]. Nature, 1997,389:360-362.
王宝,汪家道,陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究[J]. 物理学报,2014,64(7):214-220.
WANG B, WANG J D, CHEN D R. Drag reduction on hydrophobic transverse grooved surface by underwater gas formed naturally[J]. Acta Phys. Sin., 2014,64(7):214-220.(in chinese)
顾雯雯. 微流控细胞芯片LED诱导透射式荧光检测微系统[J]. 光学精密工程,2014(8):2159-2165.
GU W. LED induced transmitted fluorescence detector integrated in microfluidic cell chip[J]. Opt. Precision Eng., 2014(8):2159-2165.(in Chinese)
刘勇,钱鸿鹄,朱灵,等. 微流控实时荧光聚合酶链式反应成像非均匀性的校正[J]. 光学精密工程,2013(8):2161-2168.
ZHANG Y, QIAN H H,ZHU L, et al. Nonuniformity correction for fluorescence imaging of microfluidic real-time PCR[J].Opt. Precision Eng., 2013(8):2161-2168.(in Chinese)
GUO F, YANG S Y, MA C, et al. Experimental study on lubrication film thickness under different interface wettabilities[J]. Tribology Letters, 2014, 54(1):81-88.
SPIKES H A. The half-wetted bearing, Part1:Extended reynolds equation, IMechE[J]. Journal of Engineering Tribology, 2003, 217(1):1-14.
LUMMA D, BEST A, GANSEN A, et al. Flow profile near a wall measured by double-focus fluorescence cross-correlation[J]. Physical Review E, 2003,67(52):056313.
VINOGRADOVA O L, KOYNOV K, BEST A, et al. Direct measurement of hydrophobic slippage using double-focus fluorescence cross-correlation[J]. Physical Review Letters, 2009, 102:118302.
KUANG C, WANG G. A novel far-field nanoscopic velocimetry for nanofluidics[J]. Lab Chip, 2010, 10:240-245.
JÖNSSON P, JONSSON M P, TEGENFELDT J O, et al. A method improving the accuracy of fluorescence recovery after photobleaching analysis[J]. Biophys. J., 2008, 95:5334-5348.
张运海,杨皓旻,孔晨晖. 激光扫描共聚焦光谱成像系统[J]. 光学精密工程,2014(6):1446-1453.
ZHANG Y H, YANG H H,KONG CH H. Spectral imaging system on laser scanning conforcal microscopy[J]. Opt. Precision Eng., 2014(6):1446-1453.(in Chinese)
PIT R, HERVET H, LEGER L. Direct experimental evidence of slip in hexadecane:solid interfaces[J]. Physical Review Letters, 2000,85:980-983.
韩素立,陈波,尼启良,等. 光子计数探测器感应位敏阳极的电子云扩散[J]. 光学精密工程,2014(7):1732-1736.
HAN S L, CHEN B, NI Q L, et al. Electron cloud diffusion property of photon counting detector based on induction readout[J].Opt. Precision Eng.,2014(7):1732-1736(in Chinese)
CUENCA A, BODIGUEL H. Fluorescence photobleaching to evaluate flow velocity and hydrodynamic dispersion in nanoslits[J]. Lab Chip,2012,12, 1672-1679.
PONJAVIC A, CHENNAOUI M, WONG J. Through thickness velocity profile measurements in an elastohydrodynamic contact[J]. Tribology Letters, 2013; 50:261-277.
PONJAVIC A, MARE L D, WONG J, et al. Effect of pressure on the flow behavior of polybutene[J] Journal of Polymer Science, part B:Polymer Physics, 2014, 52:708-715.
GUO F, WONG P L, FU Z, et al. Interferometry measurement of lubricating film in slider-on-disc contacts[J]. Tribology Letters, 2010, 39(1):71-79.
BARRAT J-L, BOCQUET L. Large slip effect at a nonwetting fluid-solid interface[J]. Physical Review Letters,1999,82:4671-4674.
HUANG D M, SENDNER C, HORINEK D, et al. Water slippage versus contact angle:a quasiuniverssal relationship[J].Physical Review Letters,2008,101:226101.
0
Views
506
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution