浏览全部资源
扫码关注微信
1.哈尔滨工业大学 电子与信息工程学院, 黑龙江 哈尔滨 150001
2.哈尔滨工业大学 航天学院, 黑龙江 哈尔滨 150001
Received:04 November 2016,
Accepted:05 January 2017,
Published:25 June 2017
移动端阅览
Hong-tao YU, Guang-yu ZHANG, Dong YE. Research on cognitive user's time allocation algorithm on the mobile scene of primary users[J]. Optics and precision engineering, 2017, 25(6): 1587-1596.
Hong-tao YU, Guang-yu ZHANG, Dong YE. Research on cognitive user's time allocation algorithm on the mobile scene of primary users[J]. Optics and precision engineering, 2017, 25(6): 1587-1596. DOI: 10.3788/OPE.20172506.1587.
传统的认知无线电技术主要针对主用户和感知用户静止的认知网络,近年来对于用户移动性的研究逐渐成为了研究热点。认知网络在多媒体接入技术中应用广泛,而多媒体接入技术的协议多是基于时间分配的,本文对主用户移动场景下感知用户的时间分配方法开展了研究工作:首先构建了认知无线电网络下主用户在感知用户的干扰域内和干扰域外的时间分配模型,并从用户移动的角度给出了单个感知用户可用的传输时间,并提出了感知时间门限的问题,即由于主用户的移动性,频谱感知算法的感知准确性不会因为感知时间的延长而提高。之后为了给出实际中可以应用的时间参数设计方法,特别针对随机模型中最为常用的随机游走模型,给出了单感知用户占用频谱情况下最优传输时间和感知时间门限的表达式,并进行了仿真实验以验证方法的正确性。
Traditional cognitive radio techniques mainly aim at the primary user and cognitive user in static. For the past few tears
the research on the mobility of the user has become a hot research topic
the cognitive network is widely used in multimedia access technology
and the protocols of multimedia access technology are mostly based on the allocation of time. This paper focuses on time allocation method of cognitive users under mobile scenarios of primary users. In this paper
we firstly construct the time distribution model of the primary user in and out of the interference region of the cognitive radio network. From the view of the user's movement
the available transmission time for a single user and the problem of sensing time threshold are put forward. Secondly
Because of the mobility of the primary users
the sensing accurate of spectrum sensing algorithm would not be improved although using the longer sensing time. In order to give the time parameter design method of the application
especially for the random walk model which is most commonly used
a single user's optimal transmission time and sensing time threshold are given. The simulation is completed to verify the correctness of the algorithm.
GHASEMI A, SOUSA E S. Optimization of spectrum sensing for opportunistic spectrum access in cognitive radio networks[C]. Consumer Communications and Networking Conference, Ccnc. 2007:1022-1026.
ZOU Y, YAO Y D, ZHENG B. A cooperative sensing based cognitive relay transmission scheme without a dedicated sensing relay channel in cognitive radio networks[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 854-858.
GHASEMI A, SOUSA E S. Optimization of spectrum sensing for opportunistic spectrum access in cognitive radio networks[C]. Consumer Communications and Networking Conference, Ccnc. 2007:1022-1026.
HUYNH C K, LEE W C. Two-dimensional Genetic algorithm for OFDM-based cognitive radio systems[C]. Proceedings of 2011 IEEE 3rd International Conference on IEEE Communication Software and Networks (ICCSN), 2011:100-105.
TIAN Z, TAFESSE Y, SADLER B M. Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(1):58-69.
ELZANATI A M, ABDELKADER M F, SEDDIK K G, et al.. Collaborative compressive spectrum sensing using kronecker sparsifying basis[C].2013 IEEE Wireless Communications and Networking Conference(WCNC), 2013:2902-2907. https://www.unibo.it/sitoweb/ahmed.elzanaty/download/en/CV-Europass-Elzanaty.pdf
SHI Q, COMANICIU C, JAFFRES-RUNSER K. An auction-based mechanism for cooperative sensing in cognitive networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(8): 3649-3661.
SHAMI T M, El-SALEH A A, KAREEM A M. On the detection performance of cooperative spectrum sensing using particle swarm optimization algorithms[C]. Proceedings of 2014 IEEE 2nd International Symposium on the Telecommunication Technologies (ISTT), 2014: 110-114.
DIAS V B R C, De SOUZA R A. Performance of centralized data-fusion cooperative eigenvalue-based spectrum sensing under correlated shadowed fading[C]. Proceedings of the 2015 International Workshop on Telecommunications (IWT), 2015: 1-6.
CHOI K W, HOSSAIN E, DONG I K. Cooperative spectrum sensing under a random geometric primary user network model[J]. IEEE Transactions on Wireless Communications, 2011, 10(6):1932-1944.
LAKHEKAR G V, ROY R G. A fuzzy neural approach for dynamic spectrum allocation in cognitive radio networks[C]. Proceedings of 2014 International Conference on the Circuit, Power and Computing Technologies (ICCPCT), 2014: 1455-1461.
MITRA D, MAHAPATRA R D. FIS based cognitive radio scheduling[C]. Proceedings of 2013 IEEE International Conference on the Fuzzy Systems (FUZZ), 2013: 1-7.
SHENSHENG T, MARK B L. Modeling and analysis of opportunistic spectrum sharing with unreliable spectrum sensing[J]. IEEE Transactions on Wireless Communications, 2009, 8(4): 1934-1943.
PAURA L, SAVOIA R. Mobility-aware sensing enabled capacity in cognitive radio networks[C]. Proceedings of 2013 IEEE International Workshop on the Measurements and Networking Proceedings (M & N), 2013: 179-183. https://www.researchgate.net/publication/278327193_Channel_availability_for_mobile_cognitive_radio_networks
GUERRINI M, RUGINI L, BANELLI P. Sensing-throughput tradeoff for cognitive radios[C]. Proceedings of 2013 IEEE 14th Workshop on the Signal Processing Advances in Wireless Communications (SPAWC), 2013: 115-119.
KELKAR A, QI C. Spectrum sensing scheduling in a cost-based framework[C]. Proceedings of 2012 Conference Record of the Forty Sixth Asilomar Conference on the Signals, Systems and Computers (ASILOMAR), 2012: 1051-1055.
KANG K. Optimal time allocation for multi-hop relay cognitive radio network[C]. Proceedings of 2014 International Conference on the Wireless Communication and Sensor Network (WCSN), 2014: 5-10.
QIANG L, XIN W, YONG C. Scheduling of sequential periodic sensing for cognitive radios[C]. 2013 Proceedings of the INFOCOM, 2013: 2256-2264.
JEN-FENG H, GUEY-YUN C, SHIN-FA H, et al.. A self-diagnosis method for spectrum sensing algorithm in cognitive radio networks[C]. Proceedings of 2015 Eighth International Conference on the Mobile Computing and Ubiquitous Networking (ICMU), 2015: 25-29.
JUNE H, SEONG-LYUN K. Cross-layer optimization and network coding in CSMA/CA-based wireless multihop networks[J]. IEEE/ACM Transactions on Networking, 2011, 19(4):1028-1042.
KARMOKAR A K, SENTHURAN S, ANPALAGAN A. POMDP-based cross-layer power adaptation techniques in cognitive radio networks[C]. Proceedings of the Global Communications Conference (GLOBECOM), 2012 IEEE, 2012: 1380-1385.
YUEHUAI M, YOUYUN X, DONGMEI Z. Power allocation in heterogeneous networks: Limited spectrum-sensing ability and combined protection[J]. Journal of Communications and Networks, 2011, 13(4): 360-366.
ALEMSEGED Y D, TRAN H N, SUN C, et al.. Media access scheme in distributed spectrum sensing[C]. IEEE Vehicular Technology Conference Fall, 2010:1-5. https://www.researchgate.net/publication/257878153_Implementing_opportunistic_spectrum_access_in_LTE-advanced
CHANG K, SENADJI B. Spectrum sensing optimisation for dynamic primary user signal[J]. IEEE Transactions on Communications, 2012, 60(12): 3632-3640.
王征, 何云丰, 曹小涛, 等.基于FPGA的大面阵CMOS相机高速率电子学系统设计[J].液晶与显示, 2016: 31(2): 172-178.
ZHENG W, HE Y F, CAO X T, et al.. Design of large area array CMOS of high speed electronic camera system based on FPGA[J]. Chinese Journal of Liquid Crystals and Displays, 2016: 31(2): 172-178.
郭玉强, 王翼飞, 刘建龙, 等.取向层厚度及介电常数对TN-LCD影响的研究[J].液晶与显示, 2016: 31(11): 1018-1022.
GUO Y Q, WANG Y F, LIU J L, et al.. Effect of thickness and dielectric constant of alignment layer on the TN-LCD[J]. Chinese Journal of Liquid Crystals and Displays, 2016: 31(11): 1018-1022.(in Chinese)
0
Views
130
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution