Mu LU, Ming ZHU, Yang GAO, et al. Moving target detection based on dynamic background of cellular automaton[J]. Optics and precision engineering, 2017, 25(7): 1934-1940.
DOI:
Mu LU, Ming ZHU, Yang GAO, et al. Moving target detection based on dynamic background of cellular automaton[J]. Optics and precision engineering, 2017, 25(7): 1934-1940. DOI: 10.3788/OPE.20172507.1934.
Moving target detection based on dynamic background of cellular automaton
Aiming at the problem that it is hard to use the traditional moving target detection algorithm to accurately detect the moving target under the dynamic background
a kind of moving target detection algorithm for the cellular automaton under the dynamic background was proposed in the thesis. Firstly
according to SLIC algorithm
video images were divided in the thesis
and multi-mode hybrid dynamic texture model was used for background modeling for video images; Then
space-time salience detection was integrated with the optimized salience map which was obtained based on the automatic updating mechanism of the cellular automaton; Finally
through making appropriate threshold segmentation process for the optimized salience map
moving targets in video images was obtained. The experimental simulation result shows that under dynamic background
the algorithm can effectively restrain the influence of the salient object for non moving targets in video images on the detection result; moving targets can be detected with higher accuracy; what's more
the algorithm has certain robustness.
关键词
Keywords
references
JIANG B W, ZHANG L H, LU H C, et al.. Saliency detection via absorbing Markov chain[C]. 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, 2013:1665-1672.
NIE H T, LONG K H, MA J, et al.. Fast object recognition under multiple varying background using improved SIFT method[J]. Opt. Precision Eng., 2015, 23(8):2349-2356. (in Chinese)
YANG J M, YANG M H. Top-down visual saliency via joint CRF and dictionary learning[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2012:2296-2303.
SUN J, LING H B. Scale and object aware image retargeting for thumbnail browsing[C]. 2011 IEEE International Conference on Computer Vision (ICCV), IEEE, 2011:1511-1518.
SHEN X H, WU Y. A unified approach to salient object detection via low rank matrix recovery[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2012:853-860.
LI J Y, LIU Y Y, TIAN R, et al.. Probabilistic model single target tracking framework for video surveillance system[J]. Opt. Precision Eng., 2015, 23(7):2093-2099. (in Chinese)
ZHU W J, LIANG S, WEI Y C, et al.. Saliency optimization from robust background detection[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014:2814-2821.
LAI Z M, WANG J R, ZHANG Q H. Object detection algorithm based on background motion compensation and hypothesis test[J]. Opt. Precision Eng., 2007, 15(1):112-116. (in Chinese)
YANG C, ZHANG L H, LU H C, et al.. Saliency detection via graph-based manifold ranking[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013:3166-3173.
YAN Q, XU L, SHI J P, et al.. Hierarchical saliency detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013:1155-1162.
WEI Y C, WEN F, ZHU W J, et al.. Geodesic saliency using background priors[C]. Computer Vision-ECCV 2012, Springer, 2012:29-42.
XIE Y L, LU H C. Visual saliency detection based on Bayesian model[C]. 201118th IEEE International Conference on Image Processing (ICIP), IEEE, 2011:645-648.
XIE Y L, LU H C, YANG M H. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5):1689-1698.
WANG L, XUE J R, ZHENG N N, et al.. Automatic salient object extraction with contextual cue[C]. 2011 IEEE International Conference on Computer Vision (ICCV), IEEE, 2011:105-112.
TONG N, LU H C, ZHANG Y, et al.. Salient object detection via global and local cues[J]. Pattern Recognition, 2015, 48(10):3258-3267, doi:10.1016/j.patcog.2014.12.005.
SUN J, LU H C, LI S F. Saliency detection based on integration of boundary and soft-segmentation[C]. 201219th IEEE International Conference on Image Processing (ICIP), IEEE, 2012:1085-1088.
CHAN A B, VASCONCELOS N. Mixtures of dynamic textures[C]. 10th IEEE International Conference on Computer Vision, 2005, 1:641-647.
ACHANTA R, SHAJI A, SMITH K, et al.. SLIC superpixels[R]. EPFL Technical Report 149300, 2010.
JIANG H Z, WANG J D, YUAN Z J, et al.. Salient object detection:a discriminative regional feature integration approach[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013:2083-2090.
VON NEUMANN J. The general and logical theory of automata[J]. Cerebral Mechanisms in Behavior, 1951, 10(3):1-41.
CHENG M M, WARRELL J, LIN W Y, et al.. Efficient salient region detection with soft image abstraction[C]. 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, 2013:1529-1536.
JIANG P, LING H B, YU J Y, et al.. Salient region detection by UFO:Uniqueness, focusness and objectness[C]. 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, 2013:1976-1983.
WANG G, CHEN Y G, YANG S C, et al. Salient target detection in remote sensing image via cellular automata[C]. 20156th International Conference on Intelligent Control and Information Processing (ICICIP), IEEE, 2015:417-420.
JIANG Z L, DAVIS L S. Submodular salient region detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2013:2043-2050.
LI X H, LU H C, ZHANG L H, et al.. Saliency detection via dense and sparse reconstruction[C]. 2013 IEEE International Conference on Computer Vision (ICCV), IEEE, 2013:2976-2983.
LI Y, HOU X D, KOCH C, et al.. The secrets of salient object segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2014:280-287.