浏览全部资源
扫码关注微信
大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连 116024
Received:09 February 2017,
Accepted:02 May 2017,
Published:25 August 2017
移动端阅览
Zhi-gang DONG, Jia-dong DUAN, Ren-ke KANG, et al. Prediction model of core rod diameter of hard and brittle material processed by ultrasonic assisted grinding[J]. Optics and precision engineering, 2017, 25(8): 2106-2112.
Zhi-gang DONG, Jia-dong DUAN, Ren-ke KANG, et al. Prediction model of core rod diameter of hard and brittle material processed by ultrasonic assisted grinding[J]. Optics and precision engineering, 2017, 25(8): 2106-2112. DOI: 10.3788/OPE.20172508.2106.
超声辅助磨削是一种套料芯棒加工方法,而硬脆材料在超声辅助磨削加工过程中的去除模式主要为脆性断裂,这将导致加工出的芯棒直径与砂轮内径之间存在尺寸误差。针对上述问题,通过分析超声辅助磨削加工中砂轮表面金刚石磨粒的运动轨迹,运用压痕断裂力学理论建立了超声辅助磨削芯棒的直径预测模型。该模型考虑了脆性材料断裂时产生的侧位裂纹扩展对芯棒直径的影响。通过对K9光学玻璃材料进行超声辅助套料试验对模型进行了标定和验证,接着研究了进给速度和转速对芯棒直径误差的影响规律。通过对比研究发现,模型计算结果与试验结果吻合较好,误差小于5%,验证了模型的有效性。试验结果表明,采用适当的低转速和大进给速度可以有效降低超声辅助磨削芯棒直径的尺寸误差。本文所建模型可为超声辅助磨削套料芯棒的砂轮选择提供理论指导。
Ultrasonic assisted grinding is an effective way for trepanning the core rod
but the brittle fracture is the main manner to remove the hard and brittle materials during ultrasonic assisted grinding
leading to dimension error between the rod diameter and the inner diameter of the grinding wheel. Aiming at the above problem
based on the theory of indentation fracture mechanics and the kinematic analysis of diamond grains on the grinding wheel
a prediction model of the rod diameter was established
during which the effects of the expansion of the lateral cracks on the rod diameter were considered at the same time. Subsequently
the model was calibrated and verified through the test of ultrasonic assisted trepanning of core rod of K9 optical glass. The effect of the feed and spindle speed on the rod diameter was studied. The comparison experiment indicates that the simulation results are in good agreement with the experimental results
and the error is within 5%
which verifies the validity of the model. The experimental results show that the diameter error of the core rod can be reduced effectively with lower speed and higher feed rate during ultrasonic assisted grinding. The established prediction model of the rod diameter can offer theoretical guidance to the selection of the grinding wheel for trepanning the core rod with ultrasonic assisted grinding.
康仁科, 马付建, 董志刚, 等.难加工材料超声辅助切削加工技术[J].航空制造技术, 2012(16):44-49.
KANG R K, MA F J, DONG ZH G, et al.. Ultrasonic assisted machining of difficult-to-cut material[J]. Aeron. Manuf. Technol, 2012(16):44-49. (in Chinese)
刘运凤, 荆君涛, 李占杰.旋转超声磨削加工中刀具结合剂类型与加工性能的关系[J].光学 精密工程, 2012, 20(9):2021-2028.
LIU Y F, JING J T, LI Z J. Relationship between bond patterns of tools and working performance in rotary ultrasonic grinding[J]. Opt. Precision Eng., 2012, 20(9):2021-2028. (in Chinese)
张承龙, 冯平法, 张建富.光学玻璃旋转超声端面铣削表面特性[J].清华大学学报(自然科学版), 2012, 52(11):1616-1621.
ZHANG CH L, FENG P F, ZHANG J F. Surface properties of optical glass processed with rotary ultrasonic face milling[J]. J. Tsinghua. Univ. (Sci & Tech), 2012, 52(11):1616-1621. (in Chinese)
ZHANG Q L, SUET TO, ZHAO Q L, et al.. Surface damage mechanism of WC/Co and RB-SiC/Si composites under high spindle speed grinding (HSSG)[J]. Materials & Design, 2016, 92:378-386.
LI Z C, CAI L W, PEI Z J, et al.. Edge-chipping reduction in rotary ultrasonic machining of ceramics:Finite element analysis and experimental verification[J]. Int. J. Mach. Tool. Manu, 2006, 46(12-13):1469-1477.
ZHAO C Y, GONG H, FANG F Z, et al.. Experimental study on the cutting force difference between rotary ultrasonic machining and conventional diamond grinding of K9 glass[J]. Mach. Sci. Technol, 2013, 17(1):129-144.
刘立飞, 张飞虎, 刘民慧.碳化硅陶瓷的超声振动辅助磨削[J].光学 精密工程, 2015, 23(8):2229-2235.
LIU L F, ZHANG F H, LIU M H. Ultrasonic assisted grinding for silicon carbide[J]. Opt. Precision Eng, 2015, 23(8):2229-2235. (in Chinese)
SHEN J Y, WANG J Q, JIANG B, et al.. Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic[J]. Wear, 2015, 332(SI):788-793.
DING K, FU Y C, SU H H, et al.. Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide[J]. Int.J.Adv.Manuf.Technol, 2014, 71(9-12):1929-1938.
TAWAKOLI T, AKBARI J, ZAHEDI A. Ultrasonic assisted cylindrical grinding of Alumina zirconia ceramics[C]. IMECE2013, San Diego:NOV 15-21, USA:ASME, 2013.
HU P, ZHANG J M, PEI Z J, et al.. Modeling of material removal rate in rotary ultrasonic machining:designed experiments[J]. J Mater Process Tech, 2002, 129(1-3):339-344.
PEI Z J, PRABHAKAR D, FERREIRA P M, et al.. A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining[J]. J.Manuf.Sci.E-T.ASME, 1995, 117(2):142-151.
JIAO Y, LIU W J, PEI Z J, et al.. Study on edge chipping in rotary ultrasonic machining of ceramics:an integration of designed experiments and finite element method analysis[J]. J.Manuf.Sci.E-T.ASME, 2005, 127(4):752-758.
WANG J J, FENG P F, ZHANG J F, et al.. Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials[J]. Int. J. Mach. Tool. Manu, 2016, 101:18-27.
LV D X, ZHANG Y M, PENG Y F. High-frequency vibration effects on hole entrance chipping in rotary ultrasonic drilling of BK7 glass[J]. Ultrasonics, 2016, 72:47-56.
LAWN B R, EVANS A G, MARSHALL D B. Elastic/plastic indentation damage in ceramics:the median/radial crack system[J]. J. Am. Ceram. Soc, 1980, 63:574-580.
ANSTIS G R, CHANTIKUL P, LAWN B R, et al.. A critical evaluation of indentation techniques for measuring fracture toughness:I, direct crack measurements[J]. J. Am. Ceram. Soc, 1981, 64:533-538.
MARSHALL D B, LAWN B R, EVANS A G. Elastic/plastic indentation damage in ceramics:the lateral crack system[J]. J. Am. Ceram. Soc, 1982, 65:561-566.
CAO J G, WU Y B, LI J Y, et al.. Study on the material removal process in ultrasonic-assisted grinding of SiC ceramics using smooth particle hydrodynamic (SPH) method[J]. Int. J. Adv. Manuf. Tech, 2016, 83(5-8):985-994.
CAO J G, WU Y B, LU D, et al.. Material removal behavior in ultrasonic-assisted scratching of SiC ceramics with a single diamond tool[J]. Int. J. Mach. Tool. Manu, 2014, 79:49-61.
NA Q, PEI Z J, TREADWELL C, et al.. Physics-based predictive cutting force model in ultrasonic-vibration-assisted grinding for Titanium drilling[J]. J.Manuf.Sci.E-T.ASME, 2009, 131:111-119.
LIU D F, CONG W L, PEI Z J, et al.. A cutting force model for rotary ultrasonic machining of brittle materials[J]. Int. J. Mach. Tool. Manu, 2012, 52(1):77-84.
ZHANG C L, ZHANG J F, FENG P F. Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials[J]. Int.J.Adv.Manuf.Technol, 2013, 69(1-4):161-170.
XIAO X Z, ZHENG K, LIAO W H. Theoretical model for cutting force in rotary ultrasonic milling of dental zirconia ceramics[J]. Int.J.Adv.Manuf.Technol, 2014, 75(9-12):1263-1277.
0
Views
396
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution