浏览全部资源
扫码关注微信
大连理工大学 机械工程学院 辽宁省微系统研究中心重点实验室, 辽宁 大连 116024
Received:30 August 2017,
Accepted:14 September 2017,
Published:25 December 2017
移动端阅览
Jin-kui CHU, Wei-dong KANG, Xiang-wei ZENG, et al. Fabrication of bilayer metallic nano gratings in mid-infrared region based on flexible nanoimprint lithography[J]. Optics and precision engineering, 2017, 25(12): 3034-3040.
Jin-kui CHU, Wei-dong KANG, Xiang-wei ZENG, et al. Fabrication of bilayer metallic nano gratings in mid-infrared region based on flexible nanoimprint lithography[J]. Optics and precision engineering, 2017, 25(12): 3034-3040. DOI: 10.3788/OPE.20172512.3034.
用纳米压印工艺制备红外金属光栅时,硬模板压印极易造成光栅结构缺陷致使光栅性能下降。本文采用柔性纳米压印工艺作为替代方法制备了适合在3-5
μ
m波段工作,高度为100 nm,上下金属层厚为40 nm的双层金属纳米光栅,其光栅结构参数为:周期200 nm,线宽100 nm,深宽比1:1。该方法采用热纳米压印工艺将母模板光栅结构复制到IPS(Intermediate Ploymer Sheet)材料上,制作出压印所需软模板;随后通过紫外纳米压印工艺将IPS软模板压印到STU-7压印胶,得到结构完整均匀的介质光栅;最后在介质光栅上垂直热蒸镀金属铝,完成中红外双层金属纳米光栅的制备。对所制备光栅进行了测试,结果表明,所制备光栅在2.5~5
μ
m波段的TM偏振透射率超过70%,在2.7~5
μ
m波段的消光比超过30 dB,在2.72~3.93
μ
m波段的消光比超过35 dB,显示了优异的消光比特性和偏振特性。该研究结果在红外偏振探测、红外偏振传感等方面具有潜在应用。
In nanoimprint lithography of infrared metallic gratings
the grating structure is easily damaged by hard template nanoimprint lithography and their polarization characteristics would be reduced. This paper proposes a flexible nanoimprint lithography as the alternative method to fabricate the bilayer metallic nano grating with a height of 100 nm and a thickness of 40 nm. The grating is suitable for working at 3-5
μ
m and its main parameters are the period in 200 nm
line width in 100 nm
and the aspect ratio in 1:1. In fabrication
the master template grating structure was copied to the Intermediate PloymerSheet (IPS) material by thermal nanoimprint lithography to obtain IPS soft template for the embossing. Then
the IPS grating structure was transferred to the STU-7 resist by UV-embossing lithography to get the dielectric grating with complete and uniform structure. Finally
Al was deposited on this grating by vertical thermal evaporation
and the mid-infrared bilayer metallic nano grating was successfully fabricated. The fabricated grating was tested. The results show that the transverse magnetic transmittance of this mid-infrared bilayer metallic nano grating is greater than 70% in the 2.5-5
μ
m
and its extinction ratio is more than 30 dB in the 2.7-5
μ
m
especially it is greater than 35 dB in the 2.72-3.93
μ
m
showing excellent extinction ratio and polarization characteristics. These results demonstrate that the grating fabricated here has potential applications in infrared polarization detection and infrared polarization sensing.
柏财勋, 李建欣, 周建强, 等.基于微偏振阵列的干涉型高光谱偏振成像方法[J].红外与激光工程, 2017, 46(1):0138003.
BAI C X, LI J X, ZHOU J Q, et al.. Interferometric hyperspectral polarization imaging method based on micro-polarization array[J]. Infrared and Laser Engineering, 2017, 46(1):0138003. (in Chinese)
NORDIN G P, MEIER J T, DEGUZMAN P C, et al.. Micropolarizer array for infrared imaging polarimetry[J]. Journal of the Optical Society of America A, 1999, 16(5):1168-1174.
孙佳音, 李淳, 刘英, 等.不同光栅常数下同心长波红外成像光谱仪对比[J].红外与激光工程, 2016, 45(7):0720002.
SUN J Y, LI CH, LIU Y, et al.. Comparison of long-wave infrared imaging spectrometers with concentric under different grating constants[J]. Infrared and Laser Engineering, 2016, 45(7):0720002. (in Chinese)
KORTE E H, ROSELER A. Infrared spectroscopic ellipsometry:a tool for characterizing nanometer layers[J]. Analyst, 1998, 123(4):647-651.
杜立群, 鲍其雷, 赵明, 等.在金属基底上制作高深宽比金属微光栅的方法[J].光学 精密工程, 2015, 23(3):700-707.
DU L Q, BAO Q L, ZHAO M, et al.. Fabrication of metal micro-grating with high aspect ratio on metal substrate[J]. Opt. Precision Eng., 2015, 23(3):700-707. (in Chinese)
胡进, 董晓轩, 浦东林, 等.基于闪耀光栅图形化实现高分辨率干涉光刻[J].光学 精密工程, 2015, 23(12):3335-3342.
HU J, DONG X X, PU D L, et al.. High resolution pattern-integrated interference lithography based on blazed grating[J]. Opt. Precision Eng., 2015, 23(12):3335-3342. (in Chinese)
PRAMITHA V, GAYATHRI M S, BHATTACHARYA S. Electron beam written subwavelength gratings for polarization separation in the infrared[J]. SPIE, 2015, 9374:937412.
YAMADA I, YAMASHITA N, TANI K, et al.. Fabrication of a mid-IR wire-grid polarizer by direct imprinting on chalcogenide glass[J]. Optics Letters, 2011, 36(19):3882-3884.
YAMADA I, YAMASHITA N, TANI K, et al.. Infrared polarizer fabrication by imprinting on Sb-Ge-Sn-S chalcogenide glass[J]. Japanese Journal of Applied Physics, 2011, 51(1):012201.
郑改革, 陈云云, 徐林华, 等.高深宽比金属光栅制备及中红外波段传感特性[J].红外与毫米波学报, 2013, 32(2):154-159.
ZHENG G G, CHEN Y Y, XU L H, et al.. Fabrication and application of high aspect ratio metallic gratings for sensing in the mid-infrared region[J]. Journal of Infrared and Millimeter Waves, 2013, 32(2):154-159. (in Chinese)
YAMADA I, ISHIHARA Y. Fabrication of infrared wire-grid polarizer by sol-gel method and soft imprint lithography[J]. Applied Physics Express, 2016, 9(5):052202.
王志文. 基于金属纳米光栅的集成偏振导航传感器研究[D]. 大连: 大连理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10141-1016206176.htm
WANG ZH W. Research of Integrated Polarization Navigation Sensor Based on Nanowire Gratings [D]. Dalian:Dalian University of Technology, 2016. (in Chinese)
PALIK E D. Handbook of Optical Constants of Solids Ⅱ[M]. Boston:Academic Press, 1991:189-190.
ORDAL M A, LONG L L, BELL R J, et al.. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7):1099-1119.
ORDAL M A, BELL R J, ALEXANDER R W, et al.. Optical properties of fourteen metals in the infrared and far infrared:Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 1985, 24(24):4493-4499.
张磊, 杨敏珠, 邹曜璞, 等.红外傅里叶光谱仪的仪器线形函数及工程应用[J].光学 精密工程, 2015, 23(12):3322-3328.
ZHANG L, YANG M ZH, ZOU Y P, et al.. Instrument line shape of infrared Fourier transform spectrometer and its engineer applications[J]. Opt. Precision Eng., 2015, 23(12):3322-3328. (in Chinese)
0
Views
1031
下载量
7
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution