SONG Li-mei, WEI Ze, YANG Yan-gang etc. Non-contact high-precision defect detection and 3D reconstruction of object surface[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 87-94
SONG Li-mei, WEI Ze, YANG Yan-gang etc. Non-contact high-precision defect detection and 3D reconstruction of object surface[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 87-94 DOI: 10.3788/OPE.20172513.0087.
Non-contact high-precision defect detection and 3D reconstruction of object surface
Aimed at the requirement of non-contact and high-precision detection on the surface of optical devices
a set of geometric precision measurement system was constructed by using the principle of spectral confocal to realize flaw detection and 3D reconstruction on the surface of optical devices such as microscope lens and so on.A set of 3D scanning system of object surface was constructed combined with high-precision displacement platform to analyze structure and principle of system after introducing the measurement principle of spectral confocal displacement sensor. A self-adaptive method based on dichotomy was adopted to control sampling rate of system for the problem of inaccurate reading of spectral confocal displacement sensor caused by sampling rate
and overall measurement error of system was analyzed by repeated measurement of the same standard measured mass. Finally
high-precision measurement on the surface of microscope lens was realized. Experimental result shows that the method realizes micro-grade measurement of transparent surfaces
and still has better measurement result in the edges with larger surface gradient change. Maximum error of measurement is 0.624
μ
m
average error is 0.167
μ
m and uncertainty of measurement is 0.633
μ
m.Analysis of morphology and size can be realized for micro defects existing on the surface of lens and accurate 3D model on the surface of lens to be detected can be obtained.
关键词
Keywords
references
李兵,孙彬,陈磊,等. 激光位移传感器在自由曲面测量中的应用[J]. 光学精密工程,2015,23(07):1939-1947. LI B, SUN B, CHEN L, et al..Application of laser displacement sensor to free-form surface measurement[J]. Opt. Precision Eng., 2015, 23(07):1939-1947.
毕超,房建国,刘京亮,等. 基于球形目标的激光位移传感器光束方向标定[J]. 光学精密工程,2015,23(03):678-685. BI CH, FANG J G, LIU J L, et al.. Calibration of beam direction of laser displacement sensor based on spherical target[J]. Opt. Precision Eng., 2015, 23(03):678-685.
葛川,张德福,李朋志,等. 电容式位移传感器的线性度标定与不确定度评定[J]. 光学精密工程,2015,23(09):2546-2552. GE CH, ZHANG D F, LI P ZH, et al.. Linearity calibration and uncertainty evaluation for capacitance displacement sensor[J]. Opt. Precision Eng., 2015, 23(09):2546-2552.
张德福,葛川,李显凌,等. 高精度位移传感器线性度标定方法研究[J]. 仪器仪表学报, 2015,36(05):982-988. ZHANG D F, GE CH, LI X L, et al.. Linearity calibration method of the high-precision displacement sensor[J]. Chinese Journal of Scientific Instrument, 2015, 36(05):982-988.
李红伟,刘淑琴,于文涛,等. 电涡流传感器检测磁悬浮转子轴向位移的方法[J]. 仪器仪表学报,2011,32(07):1441-1448. LI H W, LIU SH Q, YU W T, et al.. Maglev rotor axial displacement detection method using eddy current sensor[J]. Chinese Journal of Scientific Instrument, 2011, 32(07):1441-1448.
BROWNE M A, AKINYEMI O, CROSSLEY F, et al.. Stage-scanned chromatically aberrant confocal microscope for 3-d surface imaging[J]. SPIE, 1992, 1660:532-541.
MUELLER T, JORDAN M, SCHNEIDER T, et al.. Measurement of steep edges and undercuts in confocal microscopy.[J]. Micron, 2016, 84:79.
WANG B, ZOU L, ZHANG S, et al.. Super-resolution confocal microscopy with structured detection[J]. Optics Communications, 2016, 381:277-281.
马小军,高党忠,杨蒙生,等. 应用白光共焦光谱测量金属薄膜厚度[J]. 光学精密工程,2011,19(01):17-22. MA X J, GAO D ZH, YANG M SH, et al.. Measurement of thickness of metal thin film by using chromatic confocal spectral technology[J]. Opt. Precision Eng., 2011, 19(01):17-22.
蓝河,雷大江,钱林弘,等. 基于光谱共焦位移传感器的非接触式回转误差测量系统[J]. 制造技术与机床,2017,(03):141-145. LAN H, LEI D J, QIAN L H, et al.. A non contact system for measurement of rotating error based on confocal chromatic displacement sensor[J]. Manufacturing Technology & Machine Tool, 2017, (03):141-145.
毕超,刘红光,徐昌语,等. 基于光谱共焦技术的叶尖间隙测量方法研究[J]. 航空精密制造技术,2016,52(02):14-18. BI CH, LIU H G, XU CH Y, et al.. Study on Measuring Method of Tip Clearance Based on Chromatic Confocal Technology[J]. Aviation Precision Manufacturing Technology, 2016, 52(02):14-18.
LYDA W, FLEISCHLE D, HAIST T, et al.. Chromatic confocal spectral interferometry for technical surface characterization[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2009, 7432:74320Z-74320Z-9.
朱万彬,曹世豪. 光谱共焦位移传感器测量透明材料厚度的应用[J]. 光机电信息,2011,28(09):50-53. ZHU W B, CAO SH H. Application of Confocal Chromatic Displacement Sensors to Measuring Thickness of Transparent Material[J]. OME Information, 2011, 28(09):50-53.
刘乾,杨维川,袁道成,等. 光谱共焦显微镜的线性色散物镜设计[J]. 光学精密工程,2013,21(10):2473-2479. LIU Q, YANG W CH, YUAN D CH, et al.. Design of linear dispersive objective for chromatic confocal microscope[J]. Opt. Precision Eng., 2013, 21(10):2473-2479.
熊慧,杨雪,周梅,等. 光谱仪动态采样时间特性的研究[J]. 光谱学与光谱分析, 2014,34(04):1130-1134. XIONG H, YANG X, ZHOU M, et al.. Study of Time Characteristics in Spectrometer Dynamic Sampling[J]. Spectroscopy and Spectral Analysis, 2014, 34(04):1130-1134.
Correction of probe alignment error for ZC1 worm gear profile measurement
Related Author
ZHANG Xiangchao
NIU Xingman
HAO Siyuan
LANG Wei
LI Pingfeng
LIU Ruiyang
ZHANG Zonghua
LI Wenjie
Related Institution
College of Mechanical Engineering, Hebei University of Technology
School of Information Science and Technology, Fudan University
Guilin Changhai Development Limited Company
Digital Laser Imaging and Display Engineering Research Center of Ministry of Education
Key Laboratory of Guangxi Manufacturing System and Advanced Manufacturing Technology (School of Mechanical and Electrical Engineering, Guilin University of Electronic Science and Technology )