GAO Zhi-sheng, SHEN Chen, LI Yao-shun etc. Blind restoration of atmospheric turbulence images based on P system[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 304-311
GAO Zhi-sheng, SHEN Chen, LI Yao-shun etc. Blind restoration of atmospheric turbulence images based on P system[J]. Editorial Office of Optics and Precision Engineering, 2017,25(10s): 304-311 DOI: 10.3788/OPE.20172513.0304.
Blind restoration of atmospheric turbulence images based on P system
The image process of ground-based telescopes is affected by complicated and variable factors
which seriously influences high-precision observation of space targets. Herein
a spatial object image restoration algorithm based on the P system was proposed based on the atmospheric turbulence transfer function model under long-term exposure. The non-reference single-frame image evaluation index was taken as the optimization objective function
and the P system optimization method was used to quickly obtain the atmospheric coherence length and spectral density ratio
thus reconstructing the image with the Wiener deconvolution algorithm. The algorithm was compared with five main blind restoration algorithms experimentally
which shows the proposed algorithm has the best turbulence deblurring image restoration effect. In terms of the simulated images
the average gradient and edge strength index of the proposed method are 3.74 and 39.92 respectively. In terms of real images
the entropy and edge strength of the method are 5.66 and 61.61 respectively. Generally
the average evaluation of the algorithm is more than 10% above the contrast method.
关键词
Keywords
references
曹雷, 陈洪斌, 邱琪,等. 盲图像复原研究现状[J]. 中国光学, 2014, 7(1):68-78. CAO L, CHEN H B, QIU Q, et al.. Research status of blind image restoration[J]. Chinese Optics, 2014, 7(1):68-78.(in Chinese)
GONSALVES R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 1982, 21(5):829-832.
PAXMAN R G, SCHULZ T J, FIENUP J R. Joint estimation of object and aberrations by using phase diversity[J]. Journal of the Optical Society of America A, 1992, 9(7):1072-1085.
邵慧,汪建业,徐鹏,等. 基于Huber正则化二阶加速Richardson-Lucy湍流图像复原算法[J]. 量子电子学报,2012,29(6):657-664. SHAO H, WANG J Y, XU P, et al.. Turbulence-degraded image restoration method using the second-order accelerated Richardson-Lucy algorithm based on Huber regularization[J]. Chinese Journal of Quantum Electronics, 2012, 29(6):657-664. (in Chinese)
张士杰,李俊山,杨亚威,等. 湍流退化红外图像降晰函数辨识[J]. 光学精密工程,2013,21(2):514-521. ZHANG SH J, LI J SH, YANG Y W, et al.. Blur identification of turbulence-degraded IR images[J]. Optics & Precision Engineering, 2013, 21(2):514-521. (in Chinese)
朱瑞飞,魏群,王超,等. 基于随机点扩散函数的多帧湍流退化图像自适应复原方法[J]. 中国光学,2015,03:368-377. ZHU R F, WEI Q, WANG C, et al.. Adaptive restoration method of multi-frame turbulence-degraded images based on stochastic point spread function[J]. Chinese Optics, 2015, 8(3):368-377. (in Chinese)
温昌礼, 徐蓉, 门涛,等. 基于大气相干长度的湍流模糊图像复原[J]. 光学学报, 2014, 34(3):14-21. WEN CH L, XU R, MEN T, et al.. Atmosphere turbulence blurred image restoration based on atmosphere coherent length[J]. Acta Optica Sinica, 2014, 34(3):14-21. (in Chinese)
PǍUN G,ROZENBERG G,SALOMAA A.Handbook of Membrane Computing.Oxford:Oxford University Press,2009.
李兆延, 张铖方. 基于膜计算的多模态图像配准算法研究[J]. 西华大学学报:自然科学版, 2015, 34(5):7-15,33. Li ZH Y, ZHANG CH F. Research on image registration algorithm based on membrane computing[J]. Journal of Xihua University:Natural Science Edition, 2015, 34(5):7-15,33. (in Chinese)
ONKA M S, HLAVAC V, BOYLE R. 图像处理、分析与机器视觉[M].2版. 艾海舟,武勃,译. 北京:人民邮电出版社, 2003:30-31, 157-178. SONKA M S, HlAVAC V, BOYLE R. Image Processing, Analysis, and Machine Vision[M]. 2nd ed.. AI H ZH, WU B, transl.. Beijing:The People's Posts and Telecommunications Press, 2003:30-31, 157-178. (in Chinese)
LIU Y M, WANG J, CHO S, et al.. A no-reference metric for evaluating the quality of motion deblurring[J]. Acm Transactions on Graphics, 2013, 32(6):175.
YE P, KANG L, KUMAR J, et al.. Unsupervised feature learning framework for no-reference image quality assessment[C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2012:1098-1105.
MOORTHY A K, BOVIK A C. A two-step framework for constructing blind image quality indices[J]. IEEE Signal Processing Letters, 2010, 17(5):513-516.
MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12):4695-708.
MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a "completely blind" image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(3):209-212.
LIU L X, LIU B, HUANG H, et al.. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing Image Communication, 2014, 29(8):856-863.
KRISHNAN D, TAY T, FERGUS R. Blind deconvolution using a normalized sparsity measure[C]. 2011 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2011:233-240.
KOTERA J, SROUBEK F, MILANFAR P, et al.. Blind Deconvolution Using Alternating Maximum a Posteriori Estimation with Heavy-tailed Priors[M]//WILSON R, HANCOCK E, BORS A, et al., eds. Computer Analysis of Images and Patterns, Berlin:Springer, 2013.
PERRONE D, DIETHELM R, FAVARO P. Blind deconvolution via lower-bounded logarithmic image priors[M]//TAI X C, BAE E, CHAN T F, et al., eds. Energy Minimization Methods in Computer Vision and Pattern Recognition, Cham:Springer, 2015:112-125.
PERRONE D, FAVARO P. Total variation blind deconvolution:the devil Is in the details[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014.
XU L, ZHENG S, JIA J, et al.. Unnatural L0 sparse representation for natural image deblurring[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2013.