浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 航天学院,黑龙江 哈尔滨,150001
2. 中国人民解放军63921部队 北京,100094
Received:23 August 2017,
Revised:06 September 2017,
Published:31 December 2017
移动端阅览
苗悦, 王峰, 张永强. 基于改进遗传算法的编队成像卫星自主任务规划[J]. 光学精密工程, 2017,25(12z): 168-179
MIAO Yue, WANG Feng, ZHANG Yong-qiang. Autonomous task planning of formation imaging satellites based on improved genetic algorithm[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 168-179
苗悦, 王峰, 张永强. 基于改进遗传算法的编队成像卫星自主任务规划[J]. 光学精密工程, 2017,25(12z): 168-179 DOI: 10.3788/OPE.20172514.0168.
MIAO Yue, WANG Feng, ZHANG Yong-qiang. Autonomous task planning of formation imaging satellites based on improved genetic algorithm[J]. Editorial Office of Optics and Precision Engineering, 2017,25(12z): 168-179 DOI: 10.3788/OPE.20172514.0168.
自主任务规划是成像卫星快速响应紧急观测任务,高效获取多个地面目标信息的重要途径。针对将成像区域内多个目标快速分配给多颗卫星的自主任务规划问题,提出了一种改进型遗传算法,用以快速形成每颗卫星的对地成像序列。首先,分析卫星对目标的成像条件,确定目标观测时刻与卫星期望侧摆等信息。然后,将目标、卫星成像序列、卫星编队依次编码为基因、串、个体,并设计一种基于卫星连续成像侧摆时间判断的初始种群生成方法,用以快速形成包含若干重点目标的卫星初始成像序列。再通过多次的选择-交叉-变异过程优化初始群体,使多星成像序列的观测收益达到对应于进化次数的现时最大值。最后,以10颗编队卫星规划包含3个等级的160个地面目标作为仿真实例。结果表明算法能够在30 s内给出各颗卫星的成像序列,相比于简单遗传算法,总成像收益提高40%,重点目标数量增加1.6倍。满足工程应用的快速性与高收益要求。
Autonomous task planning is an important method for imaging satellites to fast react to emergent observing missions
and to capture ground targets effectively. For the autonomous task planning problem of fast selecting targets in observation area for formation flying satellites
an improved genetic algorithm was put forward to fast obtain imaging sequence for every satellite. First
constraints of a satellite observing a target were analyzed
and observation time and expected lateral swing angles were clarified for each satellite and target. Then
ground target
imaging sequence and formation satellites were coded as gene
string and individual respectively. For fast forming original imaging sequence containing several important targets for each satellite
an original population generation method was developed based on time judgement of satellite continuous lateral swings. Selection
crossover and mutation were applied iteratively to optimize the original population
so that imaging sequences with current-optimal gain corresponding to evolution times were achieved. Finally
a simulation example containing 10 satellites in formation and 160 ground targets with 3 grades was provided. The results show that the improved genetic algorithm can generate imaging sequences for all satellites within 30 s. Contrast with simple genetic algorithm
imaging gain of proposed algorithm is improved by 40%
and the number of important targets is increased by 1.6 times. Thus
it can meet rapidity and high-gain requirements of engineering application.
LIU X L, LAPORTE G, CHEN Y W, et al.. An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time[J]. Computers & Operations Research, 2017, 86:41-53.
李亮, 王洪, 刘良玉, 等. 微小卫星星座与编队技术发展[J]. 空间电子技术, 2017, 14(1):1-3, 14. LI L, WANG H, LIU L Y, et al.. Development of micro-satellite constellation and formation technologies[J]. Space Electronic Technology, 2017, 14(1):1-3, 14. (in Chinese)
QIU D SH, HE CH, LIU J, et al.. A dynamic scheduling method of Earth-observing satellites by employing rolling horizon strategy[J]. The Scientific World Journal, 2013, 2013:304047.
WANG CH, LI J, JING N, et al.. A distributed cooperative dynamic task planning algorithm for multiple satellites based on multi-agent hybrid learning[J]. Chinese Journal of Aeronautics, 2011, 24(4):493-505.
朱剑冰, 汪路元, 赵魏, 等. 敏捷光学卫星自主任务管理系统关键技术分析[J]. 航天器工程, 2016, 25(4):54-59. ZHU J B, WANG L Y, ZHAO W, et al.. Analysis on key techniques of onboard autonomous mission management system of optical agile satellite[J]. Spacecraft Engineering, 2016, 25(4):54-59. (in Chinese)
LIU SH F, HODGSON M E. Satellite image collection modeling for large area hazard emergency response[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 118:13-21.
赵琳, 王硕, 郝勇, 等. 基于能量最优的敏捷遥感卫星在轨任务规划[J]. 航空学报, 2017, 38(6):320654. ZHAO L, WANG SH, HAO Y, et al.. Energy-optimal in orbit mission planning for agile remote sensing satellites[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):320654. (in Chinese)
MORRIS P H, MUSCETTOLA N, et al.. Planning in interplanetary space:theory and practice[C]. Proceedings of the 5th International Conference on Artificial Intelligence Planning Systems, AAAI, 2010:177-186.
CHIEN S, SHERWOOD R, TRAN D, et al.. The EO-1 autonomous science agent[C]. Proceedings of the 3rd International Joint Conference on Autonomous Agents and Multiagent Systems, IEEE, 2004:420-427.
RABIDEAU G, TRAN D, CHIEN S, et al.. Mission operations of Earth Observing-1 with onboard autonomy[C]. Proceedings of the 2nd IEEE International Conference on Space Mission Challenges for Information Technology, IEEE, 2006:367-373.
HERZ A F, MIGNOGNA A. Collection planning for the OrbView-3 high resolution imagery satellite[C]. SpaceOps 2006 Conference, AIAA, 2013:5798.
BEAUMET G, VERFAILLIE G, CHARMEAU M C. Feasibility of autonomous decision making on board an agile earth-observing satellite[J]. Computational Intelligence, 2015, 27(1):123-139.
KIM H, CHANG Y K. Mission scheduling optimization of SAR satellite constellation for minimizing system response time[J]. Aerospace Science and Technology, 2015, 40:17-32.
PEMBERTON J C, GALIBER Ⅲ F. A constraint-based approach to satellite scheduling[C]. DIMACS Workshop on Constraint Programming and Large Scale Discrete Optimization, American Mathematical Society, 2000:101-114.
JANG J, CHOI J, BAE H J, et al.. Image collection planning for KOrea Multi-Purpose SATellite-2[J]. European Journal of Operational Research, 2013, 230(1):190-199.
WOLFE W J, SORENSEN S E. Three scheduling algorithms applied to the earth observing systems domain[J]. Management Science, 2000, 46(1):148-166.
SARKHEYLI A, BAGHERI A, GHORBANI-VAGHEI B, et al.. Using an effective tabu search in interactive resources scheduling problem for LEO satellites missions[J]. Aerospace Science and Technology, 2013, 29(1):287-295.
何磊, 刘晓路, 陈英武, 等. 面向敏捷卫星任务规划的云层建模及处理方法[J]. 系统工程与电子技术, 2016, 38(4):852-858. HE L, LIU X L, CHEN Y W, et al.. Cloud modeling and processing method for agile observing satellite mission planning[J]. Systems Engineering and Electronics, 2016, 38(4):852-858. (in Chinese)
姚敏, 赵敏. 基于模糊神经网络的小卫星任务自主调度设计[J]. 宇航学报, 2007, 28(2):385-388, 426. YAO M, ZHAO M. Small satellite task autonomous scheduling design method based on fuzzy neural network[J]. Journal of Astronautics, 2007, 28(2):385-388, 426. (in Chinese)
李丹, 于洋. 基于轨道根数的低轨卫星轨道预测算法[J]. 光学精密工程, 2016, 24(10):2540-2548. LI D, YU Y. Prediction algorithm of close-orbit satellite based on orbit elements[J]. Opt. Precision Eng., 2016, 24(10):2540-2548. (in Chinese)
张洪波. 航天器轨道力学理论与方法[M]. 北京:国防工业出版社, 2015:50-51. ZHANG H B. Theories and Methods of Spacecraft Orbital Mechanics[M]. Beijing:National Defend Industry Press, 2015:50-51. (in Chinese)
LI Y Q, WANG R X, LIU Y, et al.. Satellite range scheduling with the priority constraint:an improved genetic algorithm using a station ID encoding method[J]. Chinese Journal of Aeronautics, 2015, 28(3):789-803.
0
Views
1055
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution