The traditional hyperspectral image classification methods consider only spectral information while spatial information is ignored. To address this problem
a semi-supervised spatial-spectral global and local discriminant analysis (S
3
GLDA) algorithm for hyperspectral image classification was proposed. The method firstly made use of a few labeled samples to preserve the linear separability and global discriminant information of the data set
then the local discriminant information and nonlinear manifold was uncovered by the unlabeled spatial neighbors. The spectral-domain global discriminant structure and spatial-domain local discriminant structure were exploited simultaneously and the spatial information was incorporated into the output low-dimension features automatically
which constitute the semi-supervised spatial-spectral discriminant analysis. The overall classification accuracies reached 76.24% and 82.96% on the Indian Pines and PaviaU data sets
respectively. Compared with several existing methods
the proposed algorithm can effectively improve the discriminant ability of the output features in the low-dimension subspace
which can uncover the intrinsic nonlinear multi-modal structure of the data set and obtain higher ground objects classification accuracy.
关键词
Keywords
references
FAUVEL M, TARABALKA Y, BENEDIKTSSON A, et al .. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 2013, 101(3):652-675.
HUANG H, ZHENG X L. Hyperspectral image classification with combination of weighted spatial-spectral and KNN[J]. Opt. Precision Eng., 2016, 24(4):873-880. (in Chinese)
TANG ZH Q, FU G Y, CHEN J, et al .. Multiscale segmentation-based sparse coding for hyperspectral image classification[J]. Opt. Precision Eng., 2015, 23(9):2708-2714. (in Chinese)
HE F, WANG R, YU Q, et al .. Feature extraction of hyperspectral images of weighted spatial and spectral locality preserving projection(WSSLPP)[J]. Opt. Precision Eng., 2017, 25(1):263-273. (in Chinese)
FANG M, WANG J, WANG H Y, et al .. Feature extraction of hyperspectral remote sensing data using supervised neighbor reconstruction analysis[J]. Infrared and Laser Engineering, 2016, 45(10):1028003. (in Chinese)
DENG CH ZH, ZHANG SH Q, WANG SH Q, et al .. Hyperspectral unmixing algorithm based on L1 regularization[J]. Infrared and Laser Engineering, 2015, 44(3):1092-1097. (in Chinese)
EDWARD J J. A Use's Guide to Principal Components [M]. New York:A Wiley-Interscience Publication, 1992.
DUDA R O, HART P E, STOCK D G. Pattern Classification [M]. 2nd ed. New York, NY, USA:Wiley, 2000.
CAI D, HE X F, HAN J. Semi-supervised discriminant analysis[C]. Proceedings of the 11 th IEEE International Conference on Computer Vision , IEEE , 2007: 1-7.
SUGIYAMA M, IDE T, NAKAJIMA S, et al .. Semi-supervised local fisher discriminant analysis for dimensionality reduction[J]. Machine Learning, 2010, 78(1-2):36-61.
LIAO W, PIZURICA A, SCHEUNDER P, et al .. Semisupervised local discriminant analysis for feature extraction in hyperspectral images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):184-198.
LUO R B, LIAO W Z, HUANG X, et al .. Feature extraction of hyperspectral images with semisupervised graph learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9):4389-4399.
ROWEIS S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326.
YANG Y, XU D, NIE F P, et al .. Image clustering using local discriminant models and global integration[J]. IEEE Transactions on Image Processing, 2010, 19(10):2761-2773.
YANG Y, SHEN H T, MA ZH G, et al . . -norm regularized discriminative feature selection for unsupervised learning[C]. Proceedings of the 22 th International Joint Conference on Artificial Intelligence , AAAI Press , 2011: 1589-1594.
DU L, SHEN ZH Y, LI X, et al . . Local and Global Discriminative Learning for unsupervised feature selection[C]. Proceedings of the 13 th IEEE International Conference on Data Mining , IEEE , 2013: 131-140.
DU X ZH, YAN Y, PAN P B, et al .. Multiple graph unsupervised feature selection[J]. Signal Processing, 2016, 120:754-760.
ZHANG L F, ZHANG Q, DU B, et al .. Simultaneous spectral-spatial feature selection and extraction for hyperspectral images[J]. IEEE Transactions on Cybernetics, 2017, 48(1):16-28.
XIA J S, BOMBRUN L, ADALI T, et al .. Spectral-spatial classification of hyperspectral data using ICA and edge preserving filtering via an ensemble strategy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4971-4981.
PU H, CHEN Z, WANG B, et al .. A Novel Spatial-spectral similarity measure for dimensionality reduction and classification of hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):7008-7022.
DALTON L, SAURABH P, MELBA M C, et al .. Manifold-learning based feature extraction for classification of hyperspectral data:a review of advances in manifold learning[J]. IEEE Signal Processing Magazine, 2014, 31(1):55-66.