浏览全部资源
扫码关注微信
福州大学 机械工程及自动化学院, 福建 福州 350108
Received:10 January 2018,
Accepted:10 February 2018,
Published:25 June 2018
移动端阅览
Xiang-feng WANG, Bing-pan GAO, Zhi-ying REN, et al. Integrated curved-surface conformal frequency selective surface radome[J]. Optics and precision engineering, 2018, 26(6): 1362-1369.
Xiang-feng WANG, Bing-pan GAO, Zhi-ying REN, et al. Integrated curved-surface conformal frequency selective surface radome[J]. Optics and precision engineering, 2018, 26(6): 1362-1369. DOI: 10.3788/OPE.20182606.1362.
频率选择表面雷达罩能有效提高飞行武器的隐身性能,而复杂不可展开曲面上频率选择表面的加工存在技术难题。本文利用CST仿真软件,分析了基于Y-型单元结构的二维无限大频率选择表面的电磁传输特性,同时构建三维雷达罩内置相控阵天线模型,分析了不同扫描角度下曲面雷达罩的透射率和瞄准误差,从理论上论证了方案的可行性。在此基础上,提出了一种基于多自由度激光机器人与旋转台联动的一体化曲面厚屏频率选择表面雷达罩加工方案。微波暗室测试结果表明,制备的共形曲面FSS雷达罩带内透射率达到80%左右,带外透射率低于10%,展示了良好的电磁滤波特性。这种工艺能够满足各种大型共形曲面FSS雷达罩的一体化加工需求。
Frequency Selective Surface(FSS) radomes can effectively improve the stealth performance of flying weapons. However
it is difficult to fabricate frequency selectivity on complex non-expandable surfaces. In this paper
CST simulation software was used to analyze the electromagnetic transmission characteristics of a two-dimensional infinitely large frequency selective surface
which is based on an array of Y-shaped unit structures. A 3-dimensional radome model with a built-in phased array antenna was employed to simultaneously analyze the transmittances and aiming errors at different scanning angles
to theoretically demonstrate the feasibility of the approach. Then
based on the linkage control of a multi-degree-of-freedom laser robot and a rotary table
an integrated approach was proposed to fabricate a thick-screen frequency selective surface radome. The results from tests conducted in a microwave anechoic chamber show that the prepared conformal FSS radome has a transmittance of about 80% and an out-of-band transmittance of less than 10%
demonstrating good electromagnetic filtering characteristics. This method can be used to fabricate a variety of large conformal FSS radomes.
KOZAKOFF D J. Analysis of Radome-enclosed Antennas[M]. Artech House, 1997.
MUNK B A. Frequency Selective Surfaces: Theory and Design[M]. New York: John Wiley, 2000.
CHATTERJEE A, PARUI S K. Performance enhancement of a dual-band monopole antenna by using a frequency-selective surface-based corner reflector[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6):2165-2171.
YIN J Y, WAN X, REN J, et al.. A circular polarizer with beamforming feature based on frequency selective surfaces[J]. Scientific Reports, 2017, 7:41505.
HE Y, SHEN Y, FENG X, et al.. Homogenizing microwave illumination in thermoacoustic tomography by a linear-to-circular polarizer based on frequency selective surfaces[J]. Applied Physics Letters, 2017, 111(6):063703.
LIN Y, YAO H, JU X, et al.. Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining[J]. Optics Express, 2017, 25(21):25125-25134.
王君, 孙艳军, 纪雪松, 等.光电可调控频率选择表面[J].光子学报, 2018, 47(3):0324002.
WANG J, SUN Y J, JI X S, et al.. Photoelectric controllable frequency selective surface[J]. Acta Photonica Sinica, 2018, 47(3):0324002. (in Chinese)
徐阳, 高劲松, 徐念喜, 等.低频带通与带阻自由切换的频率选择表面[J].光学 精密工程, 2018, 26(1):142-149.
XU Y, GAO J S, XU N X, et al..A frequency-selective surface structure arbitrarily switched between band-pass and band-stop responses at low frequency[J]. Opt. Precision Eng., 2018, 26(1):142-149. (in Chinese)
CHEN Z, WANG Y, WANG X, et al. . Reconfigurable frequency selective surface radome for tunable antenna RCS reduction[C]. International Applied Computational Electromagnetics Society Symposium, Florence, Italy: ACES, 2017: 1-2.
LIU N, SHENG X, ZHANG C, et al.. Design of FSS radome using binary particle swarm algorithm combined with pixel-overlap technique[J]. Journal of Electromagnetic Waves & Applications, 2017, 31(5):522-531.
WANG P, TANG P, LUO W, et al. . Design of dual-band frequency selective surface for antenna RCS reduction[C]. Progress in Electromagnetic Research Symposium, Shanghai, China: PIERS, 2016: 4116-4119.
PANWAR R, LEE J R. Progress in frequency selective surface-based smart electromagnetic structures:A critical review[J]. Aerospace Science and Technology, 2017, 66:216-234.
焦健, 徐念喜, 冯晓国, 等.基于十字单元的可调谐互补屏频率选择表面[J].光学 精密工程, 2014, 22(6):1430-1437.
JIAO J, XU N X, FENG X G, et al.. Tunable complementary frequency selective surfaces based on cross-elements[J]. Opt. Precision Eng., 2014, 22(6):1430-1437. (in Chinese)
MAHIMA P, SANGEETHA B, NARAYAN S, et al. . EM design of hybrid-element FSS structure for radome application[C]. India Conference, 2016 IEEE Annual, Mumbai, India: INDICON, 2016: 1-4.
王岩松, 高劲松, 陈新, 等.具有低空气隙敏感度的雪花单元频率选择表面[J].光学 精密工程, 2013, 21(8):1949-1956.
WANG Y S, GAO J S, CHEN X, et al.. Snow loop element frequency selective surface with low sensitivity to air gaps[J]. Opt. Precision Eng., 2013, 21(8):1949-1956. (in Chinese)
DULL D L, JENSEN D G, TICHENOR D R. Method for making precision radomes: U S, US5650249[P]. 1997.
AKINS R D, WALVOORD J. Ablative process for printed circuit board technology: U S, US5472828[P]. 1995.
GREGOIRE D J. 3D artificial impedance surfaces[C]. Antennas and Propagation Society International Symposium, Chicago, USA: APSURSI, 2012: 1-2.
GREGOIRE D J. 3-d conformal metasurfaces[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12:233-236.
WILLIAMS V G, MACFARLAND A B, SALADIN E C, et al. . Thermoformed frequency selective surface: U S, US7414593B2[P]. 2008.
LIANG F, GAO J. A novel method for fabricating curved frequency selective surface via 3D printing technology[C]. International Symposium on Optoelectronic Technology and Application 2014: Laser Materials Processing, and Micro/Nano Technologies, Beijing, China: OTA, 2014: 9295-929513.
CASALE D M, ROLLINS D S. 3D direct write patterning apparatus and method of generating patterns on doubly-curved surfaces: U S, 0265042[P]. 2014.
魏鑫磊. 雷达罩频率选择表面的设计及激光精密加工技术研究[D]. 温州: 温州大学, 2016.
WEI X L. Design and Laser Precision Machining Technologies for Frequency Selective Surface Radome[D]. Wenzhou: Wenzhou University, 2016. (in Chinese)
方家萌. 不可展频率选择表面的加工方法研究[D]. 大连: 大连理工大学, 2016.
FANG J M. Research on the Processing Method of Non-developable Frequency Selective Surface[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
0
Views
651
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution