浏览全部资源
扫码关注微信
江西理工大学 机电工程学院, 江西 赣州 341000
Received:10 October 2017,
Accepted:14 November 2017,
Published:25 June 2018
移动端阅览
Jun-feng HU, Xing-xing CHEN. Optimized design of a micro-motion stage with zero stiffness[J]. Optics and precision engineering, 2018, 26(6): 1430-1440.
Jun-feng HU, Xing-xing CHEN. Optimized design of a micro-motion stage with zero stiffness[J]. Optics and precision engineering, 2018, 26(6): 1430-1440. DOI: 10.3788/OPE.20182606.1430.
针对传统常力机构存在的运动副间隙、装配误差和摩擦磨损等问题,设计了一种基于柔顺机构的常力微动平台。平台利用直梁正刚度和双稳态梁屈曲行为产生负刚度来实现其零刚度特性。平台由对称的直梁、双稳态梁和刚性连接块组成,直梁和双稳态梁通过连接块并联连接。采用伪刚体法和椭圆积分法相结合的建模方法,建立反映常力平台力学性能的理论模型。通过与有限元分析结果进行比较,分析结果显示所建立的模型能准确反映常力平台的力学性能。基于所建立的力学模型,提出一种提高平台常力运动范围和承载能力的优化设计方法。制作样机对该平台力学性能进行实验测试,实验结果表明,平台能在输出位移范围为[0.6~1.7]mm内能够保持约48 N常力,证明了常力平台设计思路的可行性、所建模型的准确性和优化方法的有效性。
To address the movement pair gap
assembly error
friction
and wear of the traditional constant-force mechanism
a constant-force micro-motion stage based on a compliant mechanism was presented. The goal of the design was to acquire zero stiffness of the stage by using the positive stiffness of a straight beam and the negative stiffness caused by the buckling behavior of a bistable beam. The stage consisted of a symmetric straight flexible beam
bistable beam
and rigid connection block. The straight flexible beam and bistable beam were connected in parallel by using the rigid connection block. A method that combined the presido-rigid-body and elliptic-integral was proposed to establish a theoretical model reflecting the mechanical properties of the constant-force mechanism. The analysis results verified the appropriateness of the theoretical model by comparing the results of the finite element simulation. An optimal design method for improving the constant-force motion range was proposed based on the established mechanical model. A prototype of the stage was made
and the mechanical properties of the stage are tested experimentally. The experimental results show that the stage can maintain constant force of about 48 N in the output displacement range of [0.6-1.7] mm. In addition
they illustrate the feasibility of the design idea
the accuracy of the proposed model
and the effectiveness of the optimization method of the stage.
WANG D A, CHEN J H, PHAM H T. A constant-force bistable micromechanism[J]. Sensors and Actuators A:Physical, 2013, 189(2):481-487.
WANG J Y, LAN C C. A constant-force compliant gripper for handling objects of various sizes[J]. Journal of Mechanical Design, 2014, 136(7):1-10.
ZHOU J X, XIAO Q Y, XU D L, et al.. A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform[J]. Journal of Sound and Vibration, 2017, 394(2):59-74.
张春辉, 汪玉, 杜俭业, 等.被动式恒力缓冲装置的设计与性能研究[J].振动与冲击, 2015, 34(13):176-181.
ZHANG CH H, WANG Y, DU J Y, et al.. Design of a passive constant force shock absorber and its characteristics[J]. Journal of Vibration and Shock, 2015, 34(13):176-181. (in Chinese)
WEIGHT B L, MATTSON C A, MAGLEBY S P, et al.. Configuration selection, modeling and preliminary testing in support of constant force electrical connectors[J]. Journal of Electronic Packaging, 2007, 129(3):236-246.
XU Q. Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper[J]. IEEE Transactions on Robotics, 2013, 29(3):663-673.
BARENTS R, SHENK M, DORSSER W D, et al.. Spring-to-spring balancing as energy-free adjustment method in gravity equilibrators[J]. Journal of Mechanical Design, 2011, 133(6):689-700.
陈贵敏, 于靖军, 马洪波等.柔顺机构设计理论与实例[M].北京:高等教育出版社, 2015.
CHEN G M, YU J J, MA H B, et al.. Handbook of Compliant Mechanisms[M]. Beijing:Higher Education Press, 2015. (in Chinese)
胡俊峰, 徐贵阳, 郝亚洲.基于响应面法的微操作平台多目标优化[J].光学 精密工程, 2015, 23(4):1096-1104.
HU J F, XU G Y, HAO Y ZH. Multi-objective optimization of micro-manipulation stage based on response surface method[J].Opt. Precision Eng., 2015, 23(4):1096-1104. (in Chinese)
崔玉国, 朱耀祥, 娄军强, 等.压电微夹钳钳指位移与夹持力的检测[J].光学 精密工程, 2015, 23(5):1372-1379.
CUI Y G, ZHU Y X, LOU J Q, et al.. Detection of finger displacement and gripping force of piezoelectric micro-gripper[J]. Opt. Precision Eng., 2015, 23(5):1372-1379. (in Chinese)
卢倩, 黄卫清, 孙梦馨.基于柔度比优化设计杠杆式柔性铰链放大机构[J].光学 精密工程, 2016, 24(1):102-111.
LU Q, HUANG W Q, SUN M X. Optimization design of amplification mechanism for level flexure hinge based on compliance ratio[J]. Opt. Precision Eng., 2016, 24(1):102-111. (in Chinese)
WILCOX D L, HOWELL L L. Fully compliant tensural bistable micromechanisms[J]. Journal of Microelectromechanical Systems, 2005, 14(6):1223-1235.
CHEN G, ZHANG S. Fully-compliant statically-balanced mechanisms without prestressing assembly:concepts and case studies[J]. Mechanical Sciences, 2011, 2(2):169-174.
DUNNING A G, TOLOU N, HERDER J L. A compact low-stiffness six degrees of freedom compliant precision stage[J]. Precision Engineering, 2013, 37(2):380-388.
WANG P, XU Q. Design of a flexure-based constant-force XY precision positioning stage[J]. Mechanism & Machine Theory, 2017, 108:1-13.
KYLER A T, EZEKIEL G M, LARRY L H. Compliant constant-force linear-motion mechanism[J]. Mechanism and Machine Theory, 2016, 106(12):68-79.
LAN C C, WANG J H, CHEN Y H. A compliant constant-force mechanism for adaptive robot end-effector operations [C]// Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, May 3-8, 2010: 2131-2136. http://ieeexplore.ieee.org/document/5509928/
张爱梅. 平面梁大挠度非线性问题的完备解与柔性机构精确建模[D]. 西安: 西安电子科技大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10701-1013295709.htm
ZHANG A M. Comprehensive solution to nonlinear large-deflection problems of planar beams and accurate modeling of compliant mechanisms [D]. Xian: Xidian University, 2013. (in Chinese)
0
Views
968
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution