浏览全部资源
扫码关注微信
1.苏州大学 光电科学与工程学院, 江苏 苏州 215006
2.中国科学院 苏州纳米技术与纳米仿生研究所, 江苏 苏州 215215
Received:21 June 2018,
Accepted:25 July 2018,
Published:25 December 2018
移动端阅览
Xin JIN, Miao WANG, Tao-fei ZHOU, et al. GaN based metalens for micro imaging[J]. Optics and precision engineering, 2018, 26(12): 2917-2922.
Xin JIN, Miao WANG, Tao-fei ZHOU, et al. GaN based metalens for micro imaging[J]. Optics and precision engineering, 2018, 26(12): 2917-2922. DOI: 10.3788/OPE.20182612.2917.
为了实现可见光入射时亚波长尺度内的聚焦,设计了以氮化镓(GaN)纳米柱为基本晶胞的超透镜,该透镜能够改进传统成像系统的笨重低效,可应用于微型成像系统。超透镜表面由宽度渐变高度不变的GaN纳米柱阵列构成,分析GaN在亚波长尺度内对相位的调控能力和机理,并基于时域有限差分法模拟仿真了在蓝光波长为460 nm入射时透射场的高效率聚焦,对比超透镜尺寸为3.75
μ
m×3.75
μ
m、6.75
μ
m×6.75
μ
m、8.75
μ
m×8.75
μ
m、10.75
μ
m×10.75
μ
m时超透镜的聚焦能力,得出聚焦后透射场焦点处的半峰全宽分别为1,0.8,0.5,0.3
μ
m,给出了强度分布、聚焦光斑等仿真模拟结果,发现实际焦距与设计值存在偏差,且随超透镜尺寸的变化而变化。文中所设计的超透镜能够在微米级别实现聚焦,有效降低了传统成像系统的复杂度。
A metalens consisting of GaN nanopillars as basic cells was designed for subwavelength focusing at visible wavelengths
which provided an improvement over bulky and low-efficiency conventional imaging systems
and the possibility of its application to micro imaging. The metalens is composed of a GaN nanopillar array
which maintains the same height but gradually varying width. An analysis of the capacity and reasons for GaN nanopillars controlling the phase of incoming light was performed. In addition
based on FDTD methods
a simulation of 460 nm wavelength focusing in the transmission mode was performed. Subsequently
full width at half maximum (FWHM) are shown when the sizes of metalens are 3.75
μ
m×3.75 m
6.75
μ
m×6.75 m
8.75
μ
m×8.75 m
and 10.75
μ
m×10.75 m
and the results are 1
0.8
0.5
and 0.3 m
respectively. The other focusing results
such as intensity distribution and focus spots
were also discussed. As a result
there are differences between designed focal length and simulated focal length
which changes under the different sizes of metalens. In conclusion
the designed GaN based metalens can focus in micron dimension effectively
which reduces the complexity of traditional imaging systems.
张岩,叶佳声. 超表面材料与器件的应用前景[J]. 新材料产业, 2014, 16(10):30-34.
ZHANG Y, YE J SH. Application prospect of metasurface materials and devices[J]. Advanced Materials Industry, 2014, 16(10):30-34. (in Chinese)
YU N,CAPASSO F. Flat optics with designer metasurfaces[J]. Nat. Mater.,2014,13(2):139-150.
LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & amp; Astronomy, 2015, 58(9):594201.
赵泽宇, 蒲明博, 王彦钦, 等. 广义折反射定律[J]. 光电工程, 2017, 44(2):129-139.
ZHAO Z Y, PU M B, WANG Y Q, et al .. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 2017, 44(2):129-139. (in Chinese)
罗先刚, 徐挺, 杜春雷, 等. 一种包含纳米缝的金属膜透镜:中国,CN101158727[P].2008-04-09. http://www.wanfangdata.com.cn/details/detail.do?_type=patent&id=CN200710177752.5
LUO X G, XU T, DU CH L, et al .. Metal membrane lens including Nano seam:Chinese Patent, CN101158727[P].2008-04-09. (in Chinese)
XU T, WANG C T, DU CH L, et al .. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7):4753-4759.
YU N F, GENEVET P, KATS M A, et al .. Light propagation with phase discontinuities:generalized laws of reflection and refraction[J]. Science, 2011, 334(6054):333-337.
SUN S, HE Q, XIAO S, et al .. Gradient-index metasurface as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5):426-431.
李勇峰, 张介秋, 屈绍波, 等. 圆极化波反射聚焦超表面[J]. 物理学报, 2015, 64(12):124102.
LI Y F, ZHANG J Q, QU SH B, et al .. Circularly polarized wave reflection focusing metasurfaces[J]. Acta Physica Sinica, 2015,64(12):124102. (in Chinese)
AIETA F, KATES M A, GENEVET P, et al .. Multi-wavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228):1342-1345.
WANG D CH, ZHANG L CH, GU Y H, et al .. Switchable ultra thin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5:15020.
DUAN X, ZHANG M, HUANG Y, et al .. Polarization-independent focusing reflectors using two-dimensional SWG[J]. IEEE Photonics Technology Letters, 2017, 29(2):209-212.
KHORASANINEJAD M, SHI Z, ZHU A, et al .. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3):1819-1824.
CHEN B H, WU P C, SU V C, et al .. GaN metalens for pixel-level full-color routing at visible light[J]. Nano Letters, 2017, 17(10):6345-6352.
WANG S, WU P C, SU V C, et al .. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13:227-232.
0
Views
98
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution