浏览全部资源
扫码关注微信
1.中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2.中国科学院大学, 北京 100049
Received:10 January 2018,
Accepted:20 March 2018,
Published:25 December 2018
移动端阅览
Jia-wei HE, Xin HE, Zhong-hui WEI, et al. Design of high-sensitivity EMCCD navigation camera[J]. Optics and precision engineering, 2018, 26(12): 3019-3027.
Jia-wei HE, Xin HE, Zhong-hui WEI, et al. Design of high-sensitivity EMCCD navigation camera[J]. Optics and precision engineering, 2018, 26(12): 3019-3027. DOI: 10.3788/OPE.20182612.3019.
导航相机是深空探测领域中关键的导航敏感部件,本文通过提高导航相机的灵敏度来提高导航相机的综合性能,特别是提高时间分辨率,解决高动态条件下的目标探测问题。首先,根据导航相机的工作模式和EMCCD的性能特点,分析了影响导航相机成像质量的多个因素,建立了目标信噪比理论分析模型;然后,在理论计算基础上,重点研究EMCCD导航相机的样机设计技术,说明了EMCCD高频高幅驱动、模拟前端设计、TEC真空制冷、时序控制与数据处理等关键技术的实现方法;最后,介绍了相关实验工作,并分析实验数据。实验结果表明:样机最大目标信噪比在倍增增益
M
=10时达到68.6 dB,在口径13 mm条件下,可在积分时间1 ms内实现对月球成像。基本满足深空探测导航相机高动态条件下短积分时间成像的要求。
The navigation camera is a sensitive component that is crucial for deep space exploration. This report describes a method for the comprehensive improvement of the performance of such a camera by increasing their sensitivity. In particular
the approach improves the temporal resolution of this instrument and simultaneously solves the target detection problem under high dynamic conditions. Firstly
the imaging quality of a navigation camera is analyzed according to the operating mode and the performance characteristics of an Electron Multiplying Charge-Coupled Device (EMCCD). In addition
a theoretical model of a target's signal-to-noise ratio (SNR) is established. Secondly
the study focused on the design method for an EMCCD navigation camera. Key technologies are illustrated such as the high-frequency high-amplitude drive circuit of an EMCCD
analog front circuitry
TEC vacuum cooling
timing control
and data processing. Finally
the experimental results show that the optimal target SNR is 68.6 dB at
M
=10 and that the moon can be imaged using an integration time of 1 ms with a 13 mm aperture. The navigation camera satisfies the requirements of short integration time imaging under the high dynamic conditions associated with deep space exploration.
王新龙.太空战略的"北极星"——深空探测自主导航技术的发展趋势预测[J].人民论坛, 2017, (5):46-53+95.
WANG X L.The "Polaris" of space strategy-prospect of the autonomous navigation technology for deep space exploration[J]. FRONTIERS, 2017, (5):46-53+95. (in Chinese)
崔平远.深空探测:空间拓展的战略制高点[J].人民论坛, 2017, (5):13-18.
CUI P Y. Deep space exploration:the strategic apex of spatial expansion[J]. Frontiers, 2017, (5):13-18. (in Chinese)
薛喜平, 张洪波, 孔德庆.深空探测天文自主导航技术综述[J].天文研究与技术, 2017, 14(3):382-391.
XUE X P, ZHANG H B, KONG D Q. An overview of celestial autonomous navigation technology for deep space exploration[J]. Astronomical Research and Technology, 2017, 14(3):382-391. (in Chinese)
NIKOS M, DANIEL G K, STEPHEN P S.Autonomous navigation for the deep impact mission encounter with comet temple 1[J]. Space Science Reviews, 2005, 117(1):95-121.
OWEN W M, MASTRODEMOS Jr N, RUSH B P, et al ..Optical navigation for deep impact[C]. The Proceeding of the AAS / AIAA Space Flight Mechanics Meeting , 2006.
刘宇飞.深空自主导航方法研究及在接近小天体中的应用[D].哈尔滨工业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10213-2008194803.htm
LIU Y F. Study on The Deep Space Autonomous Navigation Method and Its Application in Approaching The Small Celestial Bodies [D].Harbin Industry University, 2007. (in Chinese)
常晓华.深空自主导航方法研究及在小天体探测中的应用[D].哈尔滨工业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10213-2011012823.htm
CHANG X H. Research on Deep Space Autonomous Navigation Scheme and Application to Small Celestial Bodies Exploration [D]. Harbin: Harbin Industry University, 2010. (in Chinese)
朱圣英.小天体探测器光学导航与自主控制方法研究[D].哈尔滨工业大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10213-2011015564.htm
ZHU SH Y. Optical Navigation and Autonomous Control Methods Research for Small Bodyprobe [D].Harbin: Harbin Industry University, 2009. (in Chinese)
龚德铸, 王立, 卢欣.微光探测EMCCD在高灵敏度星敏感器中的应用初探[J].红外与激光工程, 2007, 9(S):534-538.
GONG D ZH, WANG L, LU X.Detection of faint light EMCCD based on star sensor[J]. Infrared and Laser Engineering, 2007, 9(S):534-538. (in Chinese)
袁家虎, 张建荣, 贺善金.导航星敏感器探测灵敏度研究[J].光电工程, 1999, 12(6):1-6.
YUAN J H, ZHANG J R, HE SH J. A study on detection sensitivity of navigation star sensor[J]. Opto-Elect ronic Engineering, 1999, 12(6):1-6. (in Chinese)
黄富祥, 郭俊柏, 冯小虎.闪电成像仪虚警率和探测率模拟计算[J].光子学报, 2009, 12(12):3116-3120.
HUANG F X, GUO J B, FENG X H.Simulating calculation of lightning detection efficiency and false alarm rate for lightning imagery on Geo-satellite[J]. AC TA Photonica Sinica, 2009, 12(12):3116-3120. (in Chinese)
万磊, 贾平, 张叶, 修吉宏.飞行器姿态对CMOS航空相机成像的影响[J].光学精密工程, 2016, 24(1):203-209.
WAN L, JIA P, ZHANG Y, XIU J H. Effect of aircraft attitude on imaging of CMOS aerial cameras[J]. Editorial Office of Optics and Precision Engineering, 2016, 24(1):203-209. (in Chinese)
董涛, 倪晋平, 曾祥伟, 等.单线阵CCD立靶双目标同时着靶的信号处理[J].光学精密工程, 2017, 25(10s):266-273.
DONG T, NI J P, ZENG X W, et al.. Signal processing for double objectives to impact simultaneously on single linear CCD vertical target[J]. Editorial Office of Opt. Precision Eng., 2017, 25(10s):266-273. (in Chinese)
洪闻青, 姚立斌, 姬荣斌等.基于不同积分时间帧累加的红外图像超帧方法[J].光学精密工程, 2016, 24(6):1490-1500.
HONG W Q, YAO L B, JI R B, et al.. A super-frame processing method for infrared image based on accumulation of different integration time frame[J]. Opt. Precision Eng., 2016, 24(6):1490-1500. (in Chinese)
0
Views
233
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution