浏览全部资源
扫码关注微信
1.重庆大学 光电技术及系统教育部重点实验室ICT研究中心, 重庆 400044
2.重庆大学 光电工程学院, 重庆 400044
Received:29 May 2018,
Accepted:14 July 2018,
Published:25 December 2018
移动端阅览
Yong-ning ZOU, Gong-jie YAO. Median filtering algorithm for adaptive window shape[J]. Optics and precision engineering, 2018, 26(12): 3028-3039.
Yong-ning ZOU, Gong-jie YAO. Median filtering algorithm for adaptive window shape[J]. Optics and precision engineering, 2018, 26(12): 3028-3039. DOI: 10.3788/OPE.20182612.3028.
中值滤波去除噪声的同时,难免出现含有线形图像的边缘轮廓信息跟随丢失的情况。为了达到滤除图像噪声最大化,有用信息损失最小化的目的,根据图像边缘特征选择或设计了适当大小和形状的窗口来进行中值滤波等操作。一方面,创新性地提出将Hough变换应用到车轮裂缝CT图像的滤波窗口形状的选择上,针对单一方向轮廓的图像,利用Hough变换检测出裂缝的方向,从而采用与裂缝形状相应的窗口对裂缝进行有针对性滤波,将该方法与传统方法进行了对比实验,并将60层滤波后切片图像堆栈得到了三维图像;另一方面,针对含有多个方向轮廓的图像,为了进一步改善滤波效果,提出根据像素梯度设计斜向滤波器,对多方向的线对进行滤波,数据显示经改进方法滤波后图像的峰值信噪比(PSNR)较传统的中值滤波提高了4~6,结构相似性(SSIM)提高了1%~2%左右,最后用683层荞麦切片CT图堆栈得到三维图像,对比滤波前后图像,可知该方法滤波效果良好。
While removing noise
the loss of useful information is inevitable
especially the edge information of linear images. To maximize the image and minimize the loss of useful information according to the edge features of the testing image
a window with appropriate size and shape was selected to perform median filtering and other operations. It is innovatively proposed to apply a Hough transform to the filtering window shape selection of the wheel crack CT image
aiming at the image of the single direction contour. The Hough transform was used to detect the direction of the contour
and the corresponding shape window was used to filter the crack. This method was compared with the traditional method
and the image with better visual effect can be obtained after pre-processing by Hough transform. In this paper
to improve the filtering effect for images with multi-direction edge contours
an oblique filter is designed according to the pixel gradient. The data shows that the peak signal-to-noise ratio (PSNR) of the image after proposed filtering is improved by 4-6 compared with the traditional median filter. The structure similarity (SSIM) is increased by approximately 1%-2%. Three-dimensional images are obtained using the stack of CT images of buckwheat slices. The filtering result of the proposed method is favorable by the contrast of before and after.
张新明, 康强, 程金凤, 等.采用自适应四点窗中点滤波的高椒盐噪声滤除方法[J].计算机应用, 2017, 37(3):832-838.
ZHANG X M, KANG Q, CHENG J F, et al .. Adaptive four-dot midpoint filter for removing high density salt-and-pepper noise in images[J]. Journal of Computer Applications, 2017, 37(3):832-838. (in Chinese)
KHAN S, LEE D H. An adaptive dynamically weighted median filter for impulse noise removal[J]. Eurasip Journal on Advances in Signal Processing, 2017, 2017(1):67.
宗永胜, 胡晓辉, 张荣光.一种自适应双阈值中值滤波方法[J].小型微型计算机系统, 2017, 38(7):1642-1647.
ZONG Y SH, HU X H, ZHANG R G. Adaptive dual-threshold median filtering method[J]. Journal of Chinese Computer Systems, 2017, 38(7):1642-1647. (in Chinese)
NASRI M, SARYAZDI S, NEZAMABADI-POUR H. A fast adaptive salt and pepper noise reduction method in images[J]. Circuits Systems & Signal Processing, 2013, 32(4):1839-1857.
SA P K, MAJHI B. An improved adaptive impulsive noise suppression scheme for digital images[J]. AEU-International Journal of Electronics and Communications, 2010, 64(4):322-328.
王志军, 于之靖, 马凯, 等.一种自适应中值梯度倒数加权的图像滤波算法[J].激光与光电子学进展, 2017, 54(12):148-154.
WANG ZH J, YU ZH J, MA K, et al .. An image filtering algorithm based on adaptive median and gradient inverse weigh[J].Laser & Optoelectronics Progress, 2017, 54(12):148-154.(in Chinese)
刘鹏宇, 哈睿, 贾克斌.改进的自适应中值滤波算法及其应用[J].北京工业大学学报, 2017, 43(4):581-586.
LIU P Y, HA R, JIA K CH. Improved adaptive median filter and Its' application[J]. Journal of Beijing University of Technology, 2017, 43(4):581-586..(in Chinese)
ROY A, LASKAR R H. Non-casual linear prediction based adaptive filter for removal of high density impulse noise from color images[J]. AEU-International Journal of Electronics and Communications, 2017, 72:114-124.
张雷, 王延杰, 孙宏海, 等.采用核相关滤波器的自适应尺度目标跟踪[J].光学精密工程, 2016, 24(2):448-459.
ZHANG L, WANG Y J, SUN H H, et al .. Adaptive scale object tracking with kernelized correlation filters[J].Opt. Precision Eng., 2016, 24(2):448-459. (in Chinese)
黄金, 周先春, 吴婷, 等.混合维纳滤波与改进型TV的图像去噪模型[J].电子测量与仪器学报, 2017, 31(10):1659-1666.
HUANG J, ZHOU X CH, WU T, et al .. Image denoising model of hybrid wiener filtering and improved TV[J]. Journal of electronic measurement and instrumentation. 2017, 31(10):1659-1666. (in Chinese)
孙京阳, 喻春雨, 董仕佳.非局部均值噪声预测的独立成分分析降噪研究[J].光学精密工程, 2018, 26(2):511-516.
SUN J Y, YU CH Y, DONG SH J. Independent component analysis and noise reduction for non-local mean noise prediction[J]. Opt. Precision Eng., 2008, 26(2):511-516. (in Chinese)
DANIELYAN A, KATKOVNIK V, EGIAZARIAN K. BM3D frames and variational image deblurring[J]. IEEE Transactions on Image Processing, 2012, 21(4):1715-1728.
CHEN G, LUO G, TIAN L, et al .. Noise reduction for images with non-uniform noise using adaptive block matching 3D filtering[J]. Chinese Journal of Electronics, 2017, 26(6):1227-1232.
初广丽, 王延杰, 邸男, 等.复杂场景中航天器靶标的快速识别[J].光学精密工程, 2016, 24(4):865-872.
CHU G L, WANG Y J, DI N, et al .. Fast identification of spacecraft target in complex scene[J]. Opt. Precision Eng., 2016, 24(4):865-872. (in Chinese)
刘智, 黄江涛, 冯欣.构建多尺度深度卷积神经网络行为识别模型[J].光学精密工程, 2017, 25(3):799-805.
LIU ZH, HUANG J T, FENG X. Construction of multi-scale depth convolution neural network behavior recognition model[J]. Opt. Precision Eng., 2017, 25(3):799-805.(in Chinese)
KANDI H, MISHRA D, GORTHI S R K S. Exploring the learning capabilities of convolutional neural networks for robust image watermarking[J]. Computers & Security, 2017, 65:247-268.
CHONG B, ZHU Y K. Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter[J]. Optics Communications, 2013, 291(6):461-469.
ZHANG K, ZUO W, CHEN Y, et al .. Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7):3142-3155.
张广斌, 束洪春, 于继来.基于Hough变换直线检测的行波波头标定[J].中国电机工程学报, 2013, 33(19):165-173.
ZHANG G B, SHU H CH, YU J L. Surge identification for travelling wave based on straight lines detection via Hough transform[J]. Proceedings of the CSEE, 2013, 33(19):165-173. (in Chinese)
NAVA F A. The intersective Hough transform for geophysical applications[J]. Geofísica Internacional, 2014, 53(3):321-332.
乔凯, 陈健, 李中国, 等.锥束CT图像中的印刷电路板导线自动检测方法[J].光学精密工程, 2016, 24(2):413-421.
QIAO K, CHEN J, LI ZH G, et al .. An automatic detection method for printed circuit board conductors in conebeam CT images[J]. Opt. Precision Eng., 2016, 24(2):413-421. (in Chinese)
0
Views
299
下载量
8
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution