Hua-jun SONG, WEI YU, Rui WANG. High-confidence correlation tracking algorithm based on PSR and objective similarity[J]. Optics and precision engineering, 2018, 26(12): 3067-3078.
DOI:
Hua-jun SONG, WEI YU, Rui WANG. High-confidence correlation tracking algorithm based on PSR and objective similarity[J]. Optics and precision engineering, 2018, 26(12): 3067-3078. DOI: 10.3788/OPE.20182612.3067.
High-confidence correlation tracking algorithm based on PSR and objective similarity
To prevent over-deformation and to solve occlusion problems that are difficult to solve for correlated filtering tracking algorithms in the tracking field
an improved multiscale target tracking algorithm based on PSR and objective similarity was proposed in this paper. The proposed method combined a traditional correlation operation
peak side lobe ratio
with a perceptual hashing algorithm to tackle problems such as target occlusion
over deformation
and other complex scene judgments. Experimental results using the OTB-2015 demonstrate proposed algorithm's reliability and integrity of the target trajectory. The accuracy and robustness of our algorithm is better than that of Kernelized Correlation Filter (KCF) tracking algorithms. This paper presents a novel idea for occlusion detection in the target tracking field.
关键词
Keywords
references
CHEN Z, HONG Z, TAO D. An.experimental survey on correlation filter-based tracking[J]. Computer Science, 2015, 53(6025):68-83.
ZHAO G, SHEN Y, WANG J, et al.. Adaptive feature fusion object tracking based on circulant structure with kernel[J]. Acta Optica Sinica, 2017, 37(8):0815001.
MA J K, LUO H B, CHANG ZH, et al.. Visual tracking algorithm based on deformable parts model[J]. Infrared and laser engineering, 2017, 46(9):292-300.(in Chinese)
ZHANG L, WANG Y J, SUN H H, et al.. Adaptive scale target tracking using nuclear correlation filter[J]. Opt. Precision Eng., 2016, 24(2):448-459.(in Chinese)
BOLME D, BEVERIDGE J R, DRAPER B A, et al.. Visual object tracking using adaptive correlation filters[J]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010:2544-2550.
HENRIQUES J F, CASEIRO R, MARTINS P, et al.. Exploiting the circulant structure of tracking-by-detection with kernels[J]. Computer Vision-ECCV 2012, 2012:702-715.
DANELLJAN M, KHAN F S, FELSBERG M, et al.. Adaptive color attributes for real-time visual tracking[J]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014:1090-1097.
HENRIQUES J F, CASEIRO R, MARTINS P, et al.. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(3):583-596.
DANELLJAN M, H GER G, SHAHBAZ KHAN F, et al.. Accurate scale estimation for robust visual tracking[J]. Proceedings of the British Machine Vision Conference, 2014.
ZHANG K, ZHANG L, LIU Q, et al.. Fast visual tracking via dense spatio-temporal context learning[J]. Computer Vision-ECCV, 2014:127-141.
BERTINETTO L, VALMADRE J, GOLODETZ S, et al.. Staple:complementary learners for real-time tracking[J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[J]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017.
MA C, YANG X, ZHANG C, et al.. Long-term correlation tracking[C]. Computer Vision and Pattern Recognition . IEEE , 2015: 5388-5396. https://www.researchgate.net/publication/304555000_Long-term_correlation_tracking
KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 34(7):1409-1422.
LUO H B, XU L Y, HUI BIN, Status and prospect of target tracking based on deep learning[J]. Infrared and laser engineering, 2017, 46(5):6-12.(in Chinese)
WU Y, LIM J, YANG M H. Object tracking benchmark[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9):1834-1848.
YAN J, WU MY, CHEN SZ, et al.. Using Mean Shift and blocking anti occlusion tracking[J]. Opt. Precision Eng., 2010, 18(6):1413-1419. (in Chinese)
DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. IEEE Computer Society Conference on Computer Vision & Pattern Recognition . IEEE Computer Society , 2005: 886-893. http://cn.bing.com/academic/profile?id=0796294dc798795c12f84f5b2edabaef&encoded=0&v=paper_preview&mkt=zh-cn
WENG L, PRENEEL B. Attacking some perceptual image hash algorithms[C]. IEEE International Conference on Multimedia and Expo . IEEE , 2007: 879-882. https://www.researchgate.net/publication/224718724_Attacking_Some_Perceptual_Image_Hash_Algorithms
DANELLJAN M, BHAT G, KHAN F S, et al.. ECO:Efficient convolution operators for tracking[J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.