Hyperspectral Image (HSI) always suffers from various noises such as Gaussian noise
impulse
stripe noise
etc. To ensure the performance of subsequent applications
a new method for HSI restoration was proposed based on weighted Schatten norm Low-Rank Representation (LRR). The proposed method introduced the LRR model into the HSI restoration. It can accurately approximate rank using the weighted Schatten norm instead of the nuclear norm. Furthermore
the initial noiseless image was utilized as the dictionary for LRR to improve the restoration ability. Then
the Laplacian regularizer was used to describe the intrinsic geometric information of the data and to protect details of the HSI. Experimental results on synthetic and real HSI data demonstrated that the proposed method achieves better visual quality and quantitative indices than several existing related methods. Compared with the classical restoration method based on low-rank priori
the mean peak signal-to-noise ratio and structural similarity indices of this algorithm increased by 2.74 dB and 0.03 respectively
and the mean spectral angle was reduced by 1.40. The new method not only takes advantage of the low-rank prior information in the spatial domain
but also keeps the intrinsic geometric structures in data
WANG Q CH, FU G Y, WANG H Q, et al ..Fusion of multi-scale feature using multiple kernel learning for hyperspectral image land cover classification[J]. Opt.Precision Eng. , 2018, 26(4):980-988.(in Chinese)
HUANG H, CHEN M L, DUAN Y L, et al ..Hyper-spectral image classification using spatial-spectral manifold reconstruction[J]. Opt.Precision Eng. , 2018, 26(7):1827-1836.(in Chinese)
TOCHON G, CHANUSSOT J, MURA M D, et al ..Object tracking by hierarchical decomposition of hyperspectral video sequences:application to chemical gas plume tracking[J]. IEEE Transactions on Geoscience&Remote Sensing , 2017, 55(8):4567-4585.
HE F, WANG R, YU Q, et al ..Feature extraction of hyperspectral images of weighted spatial and spectral locality preserving projection (WSSLPP)[J]. Opt.Precision Eng. , 2017, 25(1):263-273.(in Chinese)
ZHANG L P, LI J Y.Development and prospect of sparse representation-based hyperspectral image processing and analysis[J]. Journal of Remote Sensing , 2016, 20(5):1091-1101.(in Chinese)
ZHANG H, HE W, ZHANG L, et al ..Hyperspectral image restoration using low-rank matrix recovery[J]. IEEE Transactions on Geoscience and Remote Sensing , 2014, 52(8):4729-4743.
CAI J, DONG B, OSHER S, et al ..Image restoration:total variation, wavelet frames, and beyond[J]. Journal of the American Mathematical Society , 2012, 25(4):1033-1089.
ELAD M, AHARON M.Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing , 2006, 15(12):3736-3745.
DABOV K, FOI A, KATKOVNIK V, et al ..Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing , 2007, 16(8):2080.
MAGGIONI M, KATKOVNIK V, EGIAZARIAN K, et al ..Nonlocal transform-domain filter for volumetric data denoising and reconstruction[J]. IEEE Transactions on Image Processing , 2012, 22(1):119-133.
WANG Y, PENG J, ZHAO Q, et al ..Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations&Remote Sensing , 2018, 11(4):1227-1243.
CHANG C I, DU Q.Interference and noise-adjusted principal components analysis[J]. IEEE Transactions on Geoscience and Remote Sensing , 1999, 37(5):2387-2396.
CANDÉS E J, LI X, MA Y, et al ..Robust principal component analysis?JACM 58(3):11[J]. Journal of the Acm. , 2011, 58(3):1-37.
XIE Y, QU Y, TAO D, et al ..Hyperspectral image restoration via iteratively regularized weighted Schatten p-norm minimization[J]. IEEE Transactions on Geoscience and Remote Sensing , 2016, 54(8):4642-4659.
LIU G C, LIN Z C, YAN S C, et al ..Robust recovery of subspace structures by low-rank representation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2013, 35(1):171-184.
CAI R R, WANG B.Hyperspectral imagery restoration based on low-rank representation[J]. Journal of Fudan University (Natural Science) , 2017, 56(3):346-358.(in Chinese)
SUMARSONO A, DU Q.Low-rank subspace representation for supervised and unsupervised classification of hyperspectral imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2016, 9(9):4188-4195.
XU Y, WU Z, LI J, et al ..Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE Transactions on Geoscience&Remote Sensing, 2016, 54(4):1990-2000.
GU S, ZHANG L, ZUO W, et al ..Weighted nuclear norm minimization with application to image denoising[C]. Computer Vision and Pattern Recognition.IEEE , 2014: 2862-2869.
YIN M, GAO J B, LIN Z C.Laplacian regularized low-rank representation and its applications[J]. IEEE Trans.on Pattern Anal.Mach.Intell. , 2016, 38(3):504-517.
CAI J F, CAND, S, E J, et al ..A singular value thresholding algorithm for matrix completion[J]. Siam Journal on Optimization, 2008, 20(4):1956-1982.
BOYD S, PARIKH N, CHU E, et al ..Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations&Trends in Machine Learning , 2010, 3(1):1-122.
XIE Y, GU S, LIU Y, et al ..Weighted Schatten p-norm minimization for image denoising and background subtraction[J]. IEEE Transactions on Image Processing , 2015, 25(10):4842-4857.
ZUO W, MENG D, ZHANG L, et al ..A generalized iterated shrinkage algorithm for non-convex sparse coding[C]. IEEE International Conference on Computer Vision .IEEE, 2013: 217-224.
LIN Z, LIU R, SU Z.Linearized alternating direction method with adaptive penalty for low-rank representation[J]. Advances in Neural Information Processing Systems , 2011:612-620.
JOSÉM B-D, JOSÉM P N.Hyperspectral subspace identification[J]. IEEE Transactions on Geoscience & Remote Sensing , 2008, 46(8):2435-2445.