The traditional Dimensionality Reduction (DR) methods consider the spectral features but ignores useful spatial information in HSI. To overcome this problem
this paper proposed a new dimensionality reduction method called Multi-Feature Manifold Discriminant Embedding (MFDE). First
the MFDE method extracted the features of the local binary pattern from HSI data. Next
the with-class and between-class graphs were constructed using sample labels to exploit the local manifold structure. Then
an optimal object function was designed to learn the combined spatial-spectral features by compacting the intra-class samples and simultaneously separating the inter-class samples. Thus
the discriminative ability of embedding features was improved. Experimental results in the Indian Pines and Heihe hyperspectral data sets show that the proposed MFDE method performs better than some state-of-the-art DR methods in most cases and achieves an overall classification accuracy of 95.05% and 96.20%
respectively. Its advantage is more significant for less training samples
making it more conducive to practical applications.
HUANG H, CHENG M L, DUAN Y L, et al .. Hyperspectral image classification with combination of spatial-spectral and manifold reconstruction[J]. Opt. Precision Eng. , 2018, 26(7): 1827-1836. (in Chinese)
DU P J, XIA J SH, XUE ZH H, et al .. Progress of hyperspectral remote sensing image classification[J]. Journal of remote sensing , 2016, 20(2): 236-256. (in Chinese)
LUO F L, DU B, ZHANG L P, et al .. Feature learning using spatial-spectral hypergraph discriminant analysis for hyperspectral image[J]. IEEE Transactions on Cybernetics , 2018, PP(99): 1-14.
HE F, WANG R, YU Q, et al .. Feature extraction of hyperspectral images of weighted spatial and spectral locality preserving projection[J]. Opt. Precision Eng. , 2017, 25(1): 263-273. (in Chinese)
FENG F, LI W, DU Q, et al .. Dimensionality reduction of hyperspectral image with graph-based discriminant analysis considering spectral similarity[J]. Remote Sensing , 2017, 9(4): 323.
FANG L, WANG C, LI S, et al .. Hyperspectral image classification via multiple-feature-based adaptive sparse representation[J]. IEEE Transactions on Instrumentation & Measurement , 2017, 66(7): 1646-1657.
XU Y H, ZHANG L P, DU B, et al .. Spectral-spatial unified networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing , 2018, PP(99): 1-17.
HUANG H, DUAN Y L, SHI G Y, et al .. Fusion of weighted mean reconstruction and SVMCK for hyperspectral image classification[J]. IEEE Access , 2018, 6(99): 15224-15235.
WANG Q CH, FU G Y, WANG H Q, et al .. Fusion of multi-scale feature using multiple kernel learning for hyperspectral image land cover classification[J]. Opt. Precision Eng. , 2018, 26(4): 980-988. (in Chinese)
JIANG J J, HU R M, WANG Z Y, et al .. CDMMA: Coupled discriminant multi-manifold analysis for matching low-resolution face images[J]. Signal Processing , 2016, 124: 162-172.
BONIFAZI G, CAPOBIANCO G, SERRANTI S. Asbestos containing materials detection and classification by the use of hyperspectral imaging[J]. Journal of Hazardous Materials , 2018, 344: 981-993.
LUO R B, LIAO W Z, PHILIPS W, et al .. An improved semi-supervised local discriminant analysis for feature extraction of hyperspectral image[J]. IEEE Transactions on Geoscience & Remote Sensing , 2015, 51(1): 184-198.
LI ZH M, ZHANG J, HUANG H, et al .. Semi-supervised bundle manifold learning for hyperspectral image classification[J]. Opt. Precision Eng. , 2015, 23(5): 1434-1442. (in Chinese)
LI W, ZHANG L P, ZHANG L F, et al .. GPU parallel implementation of isometric mapping for hyperspectral classification[J]. IEEE Geoscience & Remote Sensing Letters , 2017, 14(9): 1532-1539.
ZHANG L L, ZHAO C H. Sparsity divergence index based on locally linear embedding for hyperspectral anomaly detection[J]. Journal of Applied Remote Sensing , 2016, 10(2): 25-26.
LV M, ZHAO X, LIU L, et al .. Discriminant collaborative neighborhood preserving embedding for hyperspectral imagery[J]. Journal of Applied Remote Sensing , 2017, 11(4): 1.
DENG Y J, LI H C, PAN L, et al .. Modified tensor locality preserving projection for dimensionality reduction of hyperspectral images[J]. IEEE Geoscience & Remote Sensing Letters , 2018, 15(2): 277-281.
LU Y, LAI Z, FAN Z, et al .. Manifold discriminant regression learning for image classification[J]. Neurocomputing , 2015, 166(C): 475-486.
JIA J, RUAN Q, JIN Y. Geometric preserving local fisher discriminant analysis for person re-identification[J]. Neurocomputing , 2016, 205(C): 92-105.
LUO F L, HUANG H, DUAN Y L, et al .. Local geometric structure feature for dimensionality reduction of hyperspectral imagery[J]. Remote Sensing , 2017, 9(8): 790.
LI W, CHEN C, SU H, et al .. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience & Remote Sensing , 2015, 53(7): 3681-3693.
MAURO D M, JON A B, BIORN W. Morphological attribute profiles for the analysis of very high resolution images[J]. IEEE Transactions on Geoscience & Remote Sensing , 2010, 48(10): 3747-3762.
LI J, HUANG X, GAMBA P, et al .. Multiple feature learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing , 2015, 53(3): 1592-1606.
SONG C Y, YANG F J, LI P J. Rotation invariant texture measured by local binary pattern for remote sensing image classification[C] . 2010 Second International Workshop on Education Technology and Computer Science , Wuhan, P.R. China , 2010, 3(3): 3-6.
XIAO Q, WEN J G. HiWATER: Thermal-Infrared Hyperspectral Radiometer(4th, July, 2012)[Z]. Heihe Plan Science Data Center, 2013. doi: 10.3972/hiwater.006.2013.db.(inChinese) http://dx.doi.org/10.3972/hiwater.006.2013.db.(inChinese)