An-ru YAN, Xue-sheng LIU, Zhi-yong WANG, et al. Process parameters and thermal physical properties of W-Ni-Cu composite fabricated using selective laser melting[J]. Optics and precision engineering, 2019, 27(5): 1024-1032.
DOI:
An-ru YAN, Xue-sheng LIU, Zhi-yong WANG, et al. Process parameters and thermal physical properties of W-Ni-Cu composite fabricated using selective laser melting[J]. Optics and precision engineering, 2019, 27(5): 1024-1032. DOI: 10.3788/OPE.20192705.1024.
Process parameters and thermal physical properties of W-Ni-Cu composite fabricated using selective laser melting
To investigate the process and thermal physical performance of W-Ni-Cu manufactured using the Selective Laser Melting (SLM) technique
an experiment of four variables was conducted to study the influence of laser power
scanning speed
length of the scanning line
and overlap rate on the density. Scanning electron microscopy as well as a thermal analyzer
differential scanning calorimeter
and thermal-mechanical analyzer were used to study the microstructure
thermal conductivity
and thermal expansion. The results show that the density of W-Ni-Cu reaches 94.5% with the optimized process. The microstructure is a type of bridging connection
and agglomeration occurs between the W phases and CuNi phase that wraps around the W phase like a network. When the measuring direction is parallel to the processing direction
the thermal conductivity and thermal expansion coefficients are 120.314 0 W/m·K and 7.16×10
-6
/K
respectively. When the measuring direction is perpendicular to the processing direction
the thermal conductivity and thermal expansion coefficients are 99.257 2 W/m·K and 7.02×10
-6
/K
respectively. Test pieces form in different directions with different thermal conductivity and thermal expansion coefficients because of the distribution of W in CuNi and the existence of pores. The study shows that the W-Ni-Cu alloy parts exhibiting better performance can be manufactured directly using SLM.
关键词
Keywords
references
DING W, HE H, PAN B. Structural features and thermal properties of W/Cu compounds using tight-binding potential calculations[J]. Journal of Materials Science , 2016, 51(12):5948-5961.
FAN J L, PENG SH G, LIU T, et al . Application and latest development of W-Cu composite materials[J]. Rare Metals and Cemented Carbides , 2006, 34(3):30-35. (in Chinese)
XIAO Z F, YANG Y Q, SONG CH H, et al .Process and properties of selective laser sintering ultrahigh molecular weight polyethylene[J]. Opt. Precision Eng. , 2016, 24(3):502-510. (in Chinese)
BAI Y CH, YANG Y Q, WANG D, et al . Selective laser melting of Tin bronze alloy and its properties[J]. Rare Metal Materials and Engineering, 2018, 47(3):1007-1012. (in Chinese)
WU W H, YANG Y Q, XIAO D M, et al . Pore forming results of controllable ultra-light structured parts by selective laser melting[J]. Opt. Precision Eng. , 2017, 25(6):1547-1556. (in Chinese)
YAN A R, YANG T T, WANG Y L, et al . Forming process and high-temperature mechanical properties of variable energy laser selective melting manufacturing IN718 superalloy[J]. Opt. Precision Eng., 2015, 23(6): 1695-1704. (in Chinese)
DEMIR A G, PREVITALI B. Additive manufacturing of cardiovascular CoCr stents by selective laser melting[J]. Materials & Design, 2017, 119: 338-350.
CALVIN R, JEF M, MEGAN W, et al . Beyond the orthogonal: on the influence of build orientation on fatigue crack growth in SLM Ti-6Al-4V[J]. International Journal of Fatigue , 2018, 116:344-354.
WANG M, LI R, YUAN T, et al . Selective laser melting of W-Ni-Cu composite powder: Densification, microstructure evolution and nano-crystalline formation[J]. International Journal of Refractory Metals and Hard Materials , 2017, 70:9-18.
YAO J T, LI C J, LI Y, et al . Relationships between the properties and microstructure of Mo-Cu composites prepared by infiltrating copper into flame-sprayed porous Mo skeleton[J]. Materials & Design , 2015, 88:774-780.
LEE Y J, LEE B H, KIM G S, et al . Evaluation of conductivity in W-Cu composites through the estimation of topological microstructures[J]. Materials Letters, 2006, 60(16):2000-2003.
TAN C, ZHOU K, MA W, et al . Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties[J]. Science & Technology of Advanced Materials , 2018, 19(1):370.
ZHOU Q, CHEN P. Fabrication of W-Cu composite by shock consolidation of Cu-coated W powders[J]. Journal of Alloys and Compounds, 2016, 657:215-223.
GU D, SHEN Y. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J]. Journal of Alloys and Compounds , 2009, 473(s1-2):107-115.
CHEN W, SHI Y, DONG L, et al . Infiltration sintering of WCu alloys from copper-coated tungsten composite powders for superior mechanical properties and arc-ablation resistance[J]. Journal of Alloys & Compounds , 2017, 728: 196-205.
CHEN W, DONG L, ZHANG Z, et al . Investigation and analysis of arc ablation on WCu electrical contact materials[J]. Journal of Materials Science Materials in Electronics , 2016, 27(6):5584-5591.
YAN A R, YANG T T, WANG Y L, et al . Effect of tungsten powder particle size and shape on consolidation and microstructure of W-xCu composites by selective laser melting[J] . Chinese Journal of Lasers , 2016, 43(2): 0203007. (in Chinese)
YAN A, WANG Z, YANG T, et al . Microstructure, thermal physical property and surface morphology of W-Cu composite fabricated via selective laser melting[J]. Materials & Design , 2016, 109:79-87.
YAN A, WANG Z, YANG T, et al . Sintering densification behaviors and microstructural evolvement of W-Cu-Ni composite fabricated by selective laser sintering[J]. International Journal of Advanced Manufacturing Technology , 2017, 90(1-4):657-666.
GERMAN R M. A model for the thermal properties[J]. Metallurgical Transactions A , 1993, 24(8):1745-1752.
SANG H L, SU Y K, HAM H J. Thermal conductivity of tungsten-copper composites[J]. Thermochimica Acta, 2012, 542(542):2-5.
LUO X, YANG Y, LIU C, et al . The thermal expansion behavior of unidirectional SiC fiber-reinforced Cu-matrix composites[J]. Scripta Materialia , 2008, 58(5):401-404.
ZHANG K, SHI Z Q, QIAO G J. Preparation and thermophysical properties of directional SiC/Cu-Si composite via spontaneous infiltration[J]. Ceramics International, 2016, 42:996-1001.
ZHOU Y, WANG K, LIU R, et al . High performance tungsten synthesized by microwave sintering method[J]. International Journal of Refractory Metals & Hard Materials , 2012, 34(34):13-17.