浏览全部资源
扫码关注微信
浙江师范大学 精密机械与智能结构研究所, 浙江 金华 321004
Received:15 October 2018,
Accepted:17 December 2018,
Published:15 May 2019
移动端阅览
Shu-yun WANG, Meng-jia YAN, Jun-wu KAN, et al. Study of piezoelectric wind energy harvester with indirect excitation[J]. Optics and precision engineering, 2019, 27(5): 1121-1127.
Shu-yun WANG, Meng-jia YAN, Jun-wu KAN, et al. Study of piezoelectric wind energy harvester with indirect excitation[J]. Optics and precision engineering, 2019, 27(5): 1121-1127. DOI: 10.3788/OPE.20192705.1121.
为提高环境监测自供电系统的可靠性及风速适应性,提出一种间接激励式压电风力俘能器,通过圆柱型壳体与风场耦合作用产生的涡激振动间接激励壳体内的压电梁振动发电,具有可靠性高、动态特性调节范围宽等优点。介绍了其结构及原理,并进行了理论和试验研究。结果表明:壳体质量、压电梁质量对风力俘能器输出性能都有较大影响;当俘能器总质量确定时,试验范围内通过增加压电梁质量,减小壳体质量可以有效提高压电俘能器的输出性能;此外,不同风速下存在最佳负载使输出功率最大,且本文试验范围内输出功率及最佳负载均随风速增加而增大,风速为28 m/s、电阻600 kΩ时所获得的最大输出功率为0.4 mW。因此,应根据实际风速范围确定合理的压电梁质量/壳体质量以提高俘能器输出能力。
To improve the reliability and bandwidth of self-powered systems for environmental monitoring
a piezoelectric wind energy harvester with indirect excitation was presented. The piezoelectric beam in the shell was excited by the turbo-excited vibration generated by the coupling of the cylinder shell and wind. The proposed harvester had the advantages of high reliability and a wide dynamic adjustment range. This study introduced its structure and the principles of its operation while conducting theoretical and experimental research. The results show that the shell mass and piezoelectric beam quality have considerable influence on the output voltage of the energy harvester. Specifically
the output voltage increased with an increase in piezoelectric beam quality and decrease in shell mass. In addition
an optimal load was determined to maximize the output power under different wind speeds. The output power and optimal load were found to increase with increasing wind speed. When the wind speed is 28 m/s and the external resistance is 600 kΩ
the maximum output power is 0.4 mW under test conditions. Therefore
a reasonable shell mass and piezoelectric beam quality should be determined based on the actual range of wind speed to improve the capacity of the capture device.
刘星, 王佩红, 张小舟, 等.压电阵列径向分布的二维振动能量采集器[J].光学 精密工程, 2018, 26(9):2181-2189.
LIU X, WANG P H, ZHANG X ZH, et al .. Two-dimensional vibration energy harvester with radially distributed piezoelectric array[J]. Opt. Precision Eng , 2018, 26(9):2181-2189. (in Chinese)
程廷海, 刘文博, 赵宏伟, 等.气动高压激励的阵列式盘型压电俘能器[J].光学 精密工程, 2017, 25(5):1222-1228.
CHENG T H, LIU W B, ZHAO H W, et al .. Array piezoelectric plate harvester excited by pneumatic compressed air[J]. Opt. Precision Eng , 2017, 25(5):1222-1228. (in Chinese)
WANG J, LI G, ZHANG M, et al .. Energy harvesting from flow-induced vibration: a lumped parameter model[J]. Energ Source Part A , 2018, 40(24): 2903-2913.
KAN J, FAN C, WANG S, et al .. Study on a piezo-windmill for energy harvesting[J]. Renewable Energy , 2016, 97:210-217.
樊康旗, 刘朝辉, 王连松, 等.从人体行走中收集能量的鞋上压电俘能器[J].光学 精密工程, 2017, 25(5):1272-1280.
FAN K Q, LIU ZH H, WANG L S, et al .. Shoe-mounted piezoelectric energy harvester for collecting energy from human walking[J]. Opt. Precision Eng , 2017, 25(5):1272-1280. (in Chinese)
阚君武, 富佳伟, 王淑云, 等.涡激振动式微型流体俘能器的研究现状与展望[J].光学 精密工程, 2017, 25(6):1502-1512.
KAN J W, FU J W, WANG SH Y, et al .. Research status and prospect of vortex-induced vibration micro-fluid energy harvester[J]. Opt. Precision Eng ., 2017, 25(6):1502-1512. (in Chinese)
赵兴强, 王军雷, 蔡骏, 等.基于风致振动效应的微型风能收集器研究现状[J].振动与冲击, 2017, 36(16):106-112.
ZHAO X Q, WANG J L, CAI J, et al .. A review on micro wind energy harvesters based wind induced vibration[J]. Journal of Vibration and Shock , 2017, 36(16):106-112. (in Chinese)
NAKAMURA T. Flow-induced vibrations : classifications and lessons from practical experiences [M]. Elsevier, 2008.
王淑云, 沈亚林, 阚君武, 等.刚柔复合梁压电风能采集器的试验测试与分析[J].振动与冲击, 2016, 35(18):23-27.
WANG SH Y, SHEN Y L, Kan J W, et al .. Test and analysis of piezoelectric wind energy harvester based on rigid-flexible composite beam[J]. Journal of Vibration and Shock , 2016, 35(18):23-27. (in Chinese)
SUWA E, TSUJIURA Y, KUROKAWA F, et al .. Airflow energy harvesters of metal-based PZT thin films by self-excited vibration[C]. The International Conference on MICRO and Nanotechnology for Power Generation and Energy Conversion Applications , 2014.
LI D, WU Y, RONCH A D, et al .. Energy harvesting by means of flow-induced vibrations on aerospace vehicles[J]. Progress in Aerospace Sciences , 2016, 86:28-62.
HU Y, YANG B, CHEN X, et al .. Modeling and experimental study of a piezoelectric energy harvester from vortex shedding-induced vibration[J]. Energy Conversion & Management , 2018, 162:145-158.
ZHOU SH X, WANG J L. Dual serial vortex-induced energy harvesting system for enhanced energy harvesting[J]. AIP Advances , 2018, 8(7):075221.
ZHAO L, YANG Y. An impact-based broadband aeroelastic energy harvester for concurrent wind and base vibration energy harvesting[J]. Applied Energy, 2018, 212:233-243.
KANG Z, ZHANG C, MA G, et al .. A numerical investigation of two-degree-of-freedom VIV of a circular cylinder using the modified turbulence model[J]. Ocean Engineering , 2018, 155:211-226.
SINGIRESU SR.机械振动[M].李欣业, 张明路, 译.第四版.北京: 清华大学出版社, 2013.
SINGIRESU SR. Mechanical Vibration[M]. LI X Y, ZHANG M L, tams 1.. 4th ed. Beijing: Tsinghua University Press, 2013. (in Chinese)
0
Views
113
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution